Skip to main content
×
×
Home

Genotype replacement of the human parainfluenza virus type 2 in Croatia between 2011 and 2017 – the role of neutralising antibodies

  • M. Šantak (a1) (a2), M. Lang Balija (a1) (a2), G. Mlinarić Galinović (a3), S. Ljubin Sternak (a3) (a4), T. Vilibić-Čavlek (a3) (a5) and I. Tabain (a5)...
Abstract

Previously we reported on the HPIV2 genotype distribution in Croatia 2011–2014. Here we expand this period up to 2017 and confirm that G1a genotype has replaced G3 genotype from the period 2011–2014. Our hypothesis was that the G1a-to-G3 genotype replacement is an antibody-driven event. A cross-neutralisation with anti-HPIV2 sera specific for either G1a or G3 genotype revealed the presence of genotype-specific antigenic determinants. By the profound, in silico analyses three potential B cell epitopic regions were identified in the hemagglutinin neuraminidase (regions 314–361 and 474–490) and fusion protein (region 440–484). The region identified in the fusion protein does not show any unique site between the G1a and G3 isolates, five differentially glycosylated sites in the G1a and G3 genotype isolates were identified in epitopic regions of hemagglutinin neuraminidase. All positively selected codons were found to be located either in the region 314–316 or in the region 474–490 what indicates a strong positive selection in this region and reveals that these regions are susceptible to evolutionary pressure possibly caused by antibodies what gives a strong verification to our hypothesis that neutralising antibodies are a key determinant in the inherently complex adaptive evolution of HPIV2 in the region.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genotype replacement of the human parainfluenza virus type 2 in Croatia between 2011 and 2017 – the role of neutralising antibodies
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genotype replacement of the human parainfluenza virus type 2 in Croatia between 2011 and 2017 – the role of neutralising antibodies
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genotype replacement of the human parainfluenza virus type 2 in Croatia between 2011 and 2017 – the role of neutralising antibodies
      Available formats
      ×
Copyright
Corresponding author
Author for correspondence: M. Šantak, E-mail: msantak@unizg.hr
References
Hide All
1.Iwasaki, A and Medzihitov, R (2013) Innate response to viral infections. In Knipe, DM and Howley, PM (eds), Fields Virology, 6th Edn. Philadelphia: Wolters Kluwer, pp. 189253.
2.Graham, BS, Crowe, JE and Ledgerwood, JE (2013) Immunization against viral diseases. In Knipe, DM and Howley, PM (eds), Fields Virology, 6th Edn. Philadelphia: Wolters Kluwer, pp. 374413.
3.Chang, A and Dutch, RE (2012) Paramyxovirus fusion and entry: multiple paths to a common end. Viruses 4, 613636.
4.Lamb, RA, Paterson, RG and Jardetzky, TS (2006) Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Virology 344, 3037.
5.Bose, S et al. (2013) Mutations in the parainfluenza virus 5 fusion protein reveal domains important for fusion triggering and metastability. Journal of Virology 87, 1352013531.
6.Almajhdi, FN, Alshaman, MS and Amer, HM (2012) Human parainfluenza virus type 2 hemagglutinin-neuramindase gene: sequence and phylogenetic analysis of the Saudi strain Riyadh 105/2009. Virology Journal 9, 316.
7.Terrier, O et al. (2008) Characterization of naturally occurring parainfluenza virus type 2 (hPIV-2) variants. Journal of Clinical Virology 43, 8692.
8.Šantak, M et al. (2016) Genetic diversity among human parainfluenza virus type 2 isolated in Croatia between 2011 and 2014. Journal of Medical Virology 88, 17331741.
9.Hall, CB (2001) Respiratory syncytial virus and parainfluenza virus. New England Journal of Medicine 344, 19171928.
10.Murphy, BR (1988) Current approaches to the development of vaccines effective against parainfluenza viruses. Bulletin of World Health Organization 66, 391397.
11.Hayden, FG (2006) Respiratory viral threats. Current Opinion in Infectious Diseases 19, 169178.
12.Weinberg, GA et al. (2009) Parainfluenza virus infection of young children: estimates of the population-based burden of hospitalization. Journal of Pediatrics 154, 694699.
13.Rudan, I et al. (2010) Causes of deaths in children younger than 5 years in China in 2008. Lancet 375, 10831089.
14.Chanock, RM (1956) Association of a new type of cytopathogenic myxovirus with infantile croup. Journal of Experimental Medicine 104, 555576.
15.Laurichesse, H et al. (1999) Epidemiological features of parainfluenza virus infections: laboratory surveillance in England and Wales, 1975–1997. European Journal of Epidemiology 15, 475484.
16.Reed, G et al. (1997) Epidemiology and clinical impact of parainfluenza virus infections in otherwise healthy infants and young children 5 years old. Journal of Infectious Diseases 175, 807813.
17.Yano, T et al. (2014) Epidemiological investigation and seroprevalence of human parainfluenza virus in Mie Prefecture in Japan during 2009–2013. Japanese Journal of Infectious Diseases 67, 506508.
18.Moisiuk, SE et al. (1998) Outbreak of parainfluenza virus type 3 in an intermediate care neonatal nursery. Pediatric Infectious Diseases Journal 17, 4953.
19.Cortez, KJ et al. (2001) Outbreak of human parainfluenza virus 3 infections in a hematopoietic stem cell transplant population. Journal of Infectious Diseases 184, 10931097.
20.Cohen, BJ et al. (2007) Plaque reduction neutralization test for measles antibodies: description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. Vaccine 26, 5966.
21.Arnold, K et al. (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics (oxford, England) 22, 195201.
22.Bordoli, L et al. (2009) Protein structure homology modelling using SWISS-MODEL workspace. Nature Protocols 4, 113.
23.Biasini, M et al. (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research 42, 252258.
24.Kringelum, JV et al. (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Computational Biology 8, e1002829.
25.Ponomarenko, J et al. (2008) Ellipro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9, 514.
26.Jespersen, MC, et al. (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research 45, W24W29.
27.Hamby, SE and Hirst, JD (2008) Prediction of glycosylation sites using random forests. BMC Bioinformatics 9, 500.
28.Delport, W et al. (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics (oxford, England) 26, 24552457.
29.Numazaki, Y et al. (1968) A variant of parainfluenza type 2 virus. Proceedings of the Society for Experimental Biology and Medicine 127, 992996.
30.Tsurudome, M et al. (1989) Extensive antigenic diversity among human parainfluenza type 2 virus isolates and immunological relationships among paramyxoviruses revealed by monoclonal antibodies. Virology 171, 3848.
31.Ray, R, et al. (1992) Distinct hemagglutinin and neuraminidase epitopes involved in antigenic variation of recent human parainfluenza virus type 2 isolates. Virus Research 24, 107113.
32.Santibanez, S et al. (2002) Rapid replacement of endemic measles virus genotypes. Journal of General Virology 83, 26992708.
33.Chen, YY et al. (2011) Japanese encephalitis virus genotype replacement, Taiwan, 2009–2010. Emerging Infectious Diseases 17, 23542356.
34.Do, LP, et al. (2015) Molecular epidemiology of Japanese encephalitis in northern Vietnam, 1964–2011: genotype replacement. Virology Journal 12, 51.
35.Spriggs, MK et al. (1987) Expression of the F and HN glycoproteins of human parainfluenza virus type 3 by recombinant vaccinia viruses: contributions of the individual proteins to host immunity. Journal of Virology 61, 34163423.
36.Örvell, C et al. (1997) Characterization of genotype-specific epitopes of the HN protein of mumps virus. Journal of General Virology 78, 31873193.
37.Cusi, MG et al. (2001) Localization of a new neutralizing epitope on the mumps virus hemagglutinin-neuraminidase protein. Virus Research 74, 133137.
38.Bouche, FB, Ertl, OT and Muller, CP (2002) Neutralizing B cell response in measles. Viral Immunology 15, 451471.
39.Samal, SK (2006) Paramyxoviruses of animals. In Mahy, BWJ and van Regenmortel, MHV (eds), Desk Encyclopedia of Animal and Bacterial Virology. Oxford: Elsevier, pp. 175182.
40.Šantak, M, Örvell, C and Gulija, TK (2015) Identification of conformational neutralization sites on the fusion protein of mumps virus. Journal of General Virology 96, 982990.
41.Schmidt, AC et al. (2011) Progress in the development of human parainfluenza virus vaccines. Expert Review in Respiratory Medicine 5, 515526.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: -
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Šantak et al. supplementary material
Figures S1-S2

 Word (25 KB)
25 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed