Skip to main content Accessibility help
×
Home

Human enterovirus 71 and hand, foot and mouth disease

  • S. S. Y. WONG (a1), C. C. Y. YIP (a1), S. K. P. LAU (a1) and K. Y. YUEN (a1)

Summary

Hand, foot and mouth disease (HFMD) is generally a benign febrile exanthematous childhood disease caused by human enteroviruses. The route of transmission is postulated to be faeco-oral in developing areas but attributed more to respiratory droplet in developed areas. Transmission is facilitated by the prolonged environmental survival of these viruses and their greater resistance to biocides. Serious outbreaks with neurological and cardiopulmonary complications caused by human enterovirus 71 (HEV-71) seem to be commoner in the Asian Pacific region than elsewhere in the world. This geographical predilection is unexplained but could be related to the frequency of intra- and inter-typic genetic recombinations of the virus, the host populations' genetic predisposition, environmental hygiene, and standard of healthcare. Vaccine development could be hampered by the general mildness of the illness and rapid genetic evolution of the virus. Antivirals are not readily available; the role of intravenous immunoglobulin in the treatment of serious complications should be investigated. Monitoring of this disease and its epidemiology in the densely populated Asia Pacific epicentre is important for the detection of emerging epidemics due to enteroviruses.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Human enterovirus 71 and hand, foot and mouth disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Human enterovirus 71 and hand, foot and mouth disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Human enterovirus 71 and hand, foot and mouth disease
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Professor K. Y. Yuen, Department of Microbiology, The University of Hong Kong, 4/F University Pathology Building, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong. (Email: kyyuen@hkucc.hku.hk)

References

Hide All
1.Picornaviridae Study Group. (http://www.picornastudygroup.com/types/index.html). Accessed 22 September 2009.
2.Brown, B, et al. Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. Journal of Virology 2003; 77: 89738984.
3.Wolthers, KC, et al. Human parechoviruses as an important viral cause of sepsis-like illness and meningitis in young children. Clinical Infectious Diseases 2008; 47: 358363.
4.Zoll, J, et al. Saffold virus, a human Theiler's-like cardiovirus, is ubiquitous and causes infection early in life. PLoS Pathogens 2009; 5: e1000416.
5.Holtz, LR, et al. Klassevirus 1, a previously undescribed member of the family Picornaviridae, is globally widespread. Virology Journal 2009; 6: 86.
6.Kapoor, A, et al. A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. Proceedings of the National Academy of Sciences USA 2008; 105: 2048220487.
7.Holtz, LR, et al. Identification of a novel picornavirus related to cosaviruses in a child with acute diarrhea. Virology Journal 2008; 5: 159.
8.Li, L, et al. A novel picornavirus associated with gastroenteritis. Journal of Virology 2009; 83: 1200212006.
9.Muir, P, et al. Molecular typing of enteroviruses: current status and future requirements. The European Union concerted action on virus meningitis and encephalitis. Clinical Microbiology Reviews 1998; 11: 202227.
10.McMinn, PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiology Reviews 2002; 26: 91107.
11.Chua, BH, et al. The molecular basis of mouse adaptation by human enterovirus 71. Journal of General Virology 2008; 89: 16221632.
12.Chan, YF, Sam, IC, AbuBakar, S. Phylogenetic designation of enterovirus 71 genotypes and subgenotypes using complete genome sequences. Infection, Genetics and Evolution 2009 (in press).
13.Van der, Sanden S, et al. , on behalf of the Dutch Working Group for Clinical Virology. Epidemiology of enterovirus 71 in the Netherlands, 1963–2008. Journal of Clinical Microbiology 2009; 47: 28262833.
14.Cuervo, NS, et al. Genomic features of intertypic recombinant Sabin poliovirus strains excreted by primary vaccinees. Journal of Virology 2001; 75: 57405751.
15.Lukashev, AN. Role of recombination in evolution of enteroviruses. Reviews in Medical Virology 2005; 15: 157167.
16.Santti, J, et al. Evidence of recombination among enteroviruses. Journal of Virology 1999; 73: 87418749.
17.Oprisan, G, et al. Natural genetic recombination between co-circulating heterotypic enteroviruses. Journal of General Virology 2002; 83: 21932200.
18.Lukashev, AN, et al. Recombination in circulating enteroviruses. Journal of Virology 2003; 77: 1042310431.
19.Oberste, MS, Peñaranda, S, Pallansch, MA. RNA recombination plays a major role in genomic change during circulation of coxsackie B viruses. Journal of Virology 2004; 78: 29482955.
20.Simmonds, P, Welch, J. Frequency and dynamics of recombination within different species of human enteroviruses. Journal of Virology 2006; 80: 483493.
21.Chan, YF, AbuBaker, S. Recombinant human enterovirus 71 in hand, foot and mouth disease patients. Emerging Infectious Diseases 2004; 10: 14681470.
22.Ding, NZ, et al. Appearance of mosaic enterovirus 71 in the 2008 outbreak of China. Virus Research 2009; 145: 157161.
23.Lin, YW, et al. Enterovirus 71 infection of human dendritic cells. Experimental Biology and Medicine (Maywood) 2009; 234: 11661173.
24.Nishimura, Y, et al. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nature Medicine 2009; 15: 794797.
25.Yamayoshi, S, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nature Medicine 2009; 15: 798801.
26.Moore, KL. Structure and function of P-selectin glycoprotein ligand-1. Leukemia and Lymphoma 1998; 29: 115.
27.Mulcahy, JV, Riddell, DR, Owen, JS. Human scavenger receptor class B type II (SR-BII) and cellular cholesterol efflux. Biochemical Journal 2004; 377: 741747.
28.Webb, NR, et al. SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells. Journal of Biological Chemistry 1998; 273: 1524115248.
29.Thilakawardhana, S, et al. Quantification of apolipoprotein E receptors in human brain-derived cell lines by real-time polymerase chain reaction. Neurobiology of Aging 2005; 26: 813823.
30.Eckhardt, ER, et al. High density lipoprotein endocytosis by scavenger receptor SR-BII is clathrin-dependent and requires a carboxyl-terminal dileucine motif. Journal of Biological Chemistry 2006; 281: 43484353.
31.Brodeur, MR, et al. Scavenger receptor of class B expressed by osteoblastic cells are implicated in the uptake of cholesteryl ester and estradiol from LDL and HDL3. Journal of Bone and Mineral Research 2008; 23: 326337.
32.Grove, J, et al. Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity. Journal of Virology 2007; 81: 31623169.
33.Barth, H, et al. Scavenger receptor class B is required for hepatitis C virus uptake and cross-presentation by human dendritic cells. Journal of Virology 2008; 82: 34663479.
34.Mueller, S, Wimmer, E, Cello, J. Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. Virus Research 2005; 111: 175193.
35.Racaniello, VR. One hundred years of poliovirus pathogenesis. Virology 2006; 344: 916.
36.Wong, KT, et al. The distribution of inflammation and virus in human enterovirus 71 encephalomyelitis suggests possible viral spread by neural pathways. Journal of Neuropathology and Experimental Neurology 2008; 67: 162169.
37.Chen, CS, et al. Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. Journal of Virology 2007; 81: 89969003.
38.Wen, YY, et al. Comparative study of enterovirus 71 infection of human cell lines. Journal of Medical Virology 2003; 70: 109118.
39.Kuo, RL, et al. Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. Journal of General Virology 2002; 83: 13671376.
40.Chan, YF, Abubakar, S. Enterovirus 71 infection induces apoptosis in Vero cells. Malaysian Journal of Pathology 2003; 25: 2935.
41.Chang, SC, et al. Diverse apoptotic pathways in enterovirus 71-infected cells. Journal of Neurovirology 2004; 10: 338349.
42.Liang, CC, et al. Human endothelial cell activation and apoptosis induced by enterovirus 71 infection. Journal of Medical Virology 2004; 74: 597603.
43.Chen, TC, et al. Enterovirus 71 triggering of neuronal apoptosis through activation of Abl-Cdk5 signalling. Cellular Microbiology 2007; 9: 26762688.
44.Huang, SC, et al. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. Journal of Medical Virology 2009; 81: 12411252.
45.Chan, LG, et al. Deaths of children during an outbreak of hand, foot, and mouth disease in Sarawak, Malaysia: clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clinical Infectious Diseases 2000; 31: 678683.
46.Lum, LC, et al. Fatal enterovirus 71 encephalomyelitis. Journal of Pediatrics 1998; 133: 795798.
47.Yang, Y, et al. Neuropathology in 2 cases of fatal enterovirus type 71 infection from a recent epidemic in the People's Republic of China: a histopathologic, immunohistochemical, and reverse transcription polymerase chain reaction study. Human Pathology 2009; 40: 12881295.
48.Fu, YC, et al. Cardiac complications of enterovirus rhombencephalitis. Archives of Disease in Childhood 2004; 89: 368373.
49.Shieh, WJ, et al. Pathologic studies of fatal cases in outbreak of hand, foot, and mouth disease, Taiwan. Emerging Infectious Diseases 2001; 7: 146148.
50.Lin, YW, et al. Lymphocyte and antibody responses reduce enterovirus 71 lethality in mice by decreasing tissue viral loads. Journal of Virology 2009; 83: 64776483.
51.Yang, KD, et al. Altered cellular but not humoral reactions in children with complicated enterovirus 71 infections in Taiwan. Journal of Infectious Diseases 2001; 183: 850856.
52.Chang, LY, et al. Status of cellular rather than humoral immunity is correlated with clinical outcome of enterovirus 71. Pediatric Research 2006; 60: 466471.
53.Yu, CK, et al. Neutralizing antibody provided protection against enterovirus type 71 lethal challenge in neonatal mice. Journal of Biomedical Science 2000; 7: 523528.
54.Foo, DG, et al. Passive protection against lethal enterovirus 71 infection in newborn mice by neutralizing antibodies elicited by a synthetic peptide. Microbes and Infection 2007; 9: 12991306.
55.Wu, TC, et al. Immunity to avirulent enterovirus 71 and coxsackie A16 virus protects against enterovirus 71 infection in mice. Journal of Virology 2007; 81: 1031010315.
56.Chang, LY, et al. Risk factors of enterovirus 71 infection and associated hand, foot, and mouth disease/herpangina in children during an epidemic in Taiwan. Pediatrics 2002; 109: e88.
57.Ho, M, et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. New England Journal of Medicine 1999; 341: 929935.
58.Luo, ST, et al. Enterovirus 71 maternal antibodies in infants, Taiwan. Emerging Infectious Diseases 2009; 15: 581584.
59.Chiu, CH, et al. Protection of neonatal mice from lethal enterovirus 71 infection by maternal immunization with attenuated Salmonella enterica serovar Typhimurium expressing VP1 of enterovirus 71. Microbes and Infection 2006; 8: 16711678.
60.Chang, LY, et al. Comparison of enterovirus 71 and coxsackie-virus A16 clinical illnesses during the Taiwan enterovirus epidemic, 1998. Pediatric Infectious Disease Journal 1999; 18: 10921096.
61.Chong, CY, et al. Hand, foot and mouth disease in Singapore: a comparison of fatal and non-fatal cases. Acta Paediatrica 2003; 92: 11631169.
62.Tai, WC, Hsieh, HJ, Wu, MT. Hand, foot and mouth disease in a healthy adult caused by intrafamilial transmission of enterovirus 71. British Journal of Dermatolology 2009; 160: 890892.
63.Hamaguchi, T, et al. Acute encephalitis caused by intrafamilial transmission of enterovirus 71 in adult. Emerging Infectious Diseases 2008; 14: 828830.
64.Cardosa, MJ, et al. Molecular epidemiology of human enterovirus 71 strains and recent outbreaks in the Asia-Pacific region: comparative analysis of the VP1 and VP4 genes. Emerging Infectious Diseases 2003; 9: 461468.
65.Centers for Disease Control, Republic of China (Taiwan). The activity of human enterovirus in Taiwan between 1998 and 2006 (http://www.cdc.gov.tw/public/Attachment/7121014355971.pdf). Accessed 22 July 2009.
66.Chang, LY, et al. Transmission and clinical features of enterovirus 71 infections in household contacts in Taiwan. Journal of the American Medical Association 2004; 291: 222227.
67.Yang, TT, et al. Clinical features and factors of unfavorable outcomes for non-polio enterovirus infection of the central nervous system in northern Taiwan, 1994–2003. Journal of Microbiology, Immunology, and Infection 2005; 38: 417424.
68.Huang, CC, et al. Neurologic complications in children with enterovirus 71 infection. New England Journal of Medicine 1999; 341: 936942.
69.Chang, LY, et al. Neurodevelopment and cognition in children after enterovirus 71 infection. New England Journal of Medicine 2007; 356: 12261234.
70.Huang, MC, et al. Long-term cognitive and motor deficits after enterovirus 71 brainstem encephalitis in children. Pediatrics 2006; 118: e17851788.
71.Kao, SJ, et al. Mechanism of fulminant pulmonary edema caused by enterovirus 71. Clinical Infectious Diseases 2004; 38: 17841788.
72.Chang, LY, et al. Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet 1999; 354: 16821686.
73.Li, CC, et al. Clinical manifestations and laboratory assessment in an enterovirus 71 outbreak in southern Taiwan. Scandinavian Journal of Infectious Diseases 2002; 34: 104109.
74.Yang, TT, et al. Clinical features and factors of unfavorable outcomes for non-polio enterovirus infection of the central nervous system in northern Taiwan, 1994–2003. Journal of Microbiology, Immunology, and Infection 2005; 38: 417424.
75.Hsia, SH, et al. Predictors of unfavorable outcomes in enterovirus 71-related cardiopulmonary failure in children. Pediatric Infectious Disease Journal 2005; 24: 331334.
76.Iturriza-Gómara, M, Megson, B, Gray, J. Molecular detection and characterization of human enteroviruses directly from clinical samples using RT-PCR and DNA sequencing. Journal of Medical Virology 2006; 78: 243253.
77.Leitch, EC, et al. Direct identification of human enterovirus serotypes in cerebrospinal fluid by amplification and sequencing of the VP1 region. Journal of Clinical Virology 2009; 44: 119124.
78.Nix, WA, Oberste, MS, Pallansch, MA. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. Journal of Clinical Microbiology 2006; 44: 26982704.
79.Terletskaia-Ladwig, E, et al. A convenient rapid culture assay for the detection of enteroviruses in clinical samples: comparison with conventional cell culture and RT-PCR. Journal of Medical Microbiology 2008; 57: 10001006.
80.Tsao, KC, et al. Responses of IgM for enterovirus 71 infection. Journal of Medical Virology 2002; 68: 574580.
81.Blomberg, J, et al. New enterovirus type associated with epidemic of aseptic meningitis and-or hand, foot, and mouth disease. Lancet 1974; 2: 112.
82.Hagiwara, A, Tagaya, I, Yoneyama, T. Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology 1978; 9: 6063.
83.Chumakov, M, et al. Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Archives of Virology 1979; 60: 329340.
84.Nagy, G, et al. Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Archives of Virology 1982; 71: 217227.
85.Chang, LY, et al. HLA-A33 is associated with susceptibility to enterovirus 71 infection. Pediatrics 2008; 122: 12711276.
86.Ho, HY, et al. Glucose-6-phosphate dehydrogenase deficiency enhances enterovirus 71 infection. Journal of General Virology 2008; 89: 20802089.
87.Le Jossec, M, et al. Genetic diversity patterns in the SR-BI/II locus can be explained by a recent selective sweep. Molecular Biology and Evolution 2004; 21: 760769.
88.Mata, LJ, Urrutia, JJ, Lechtig, A. Infection and nutrition of children of a low socioeconomic rural community. American Journal of Clinical Nutrition 1971; 24: 249259.
89.Beck, MA, Matthews, CC. Micronutrients and host resistance to viral infection. Proceedings of the Nutrition Society 2000; 59: 581585.
90.Beck, MA, Williams-Toone, D, Levander, OA. Coxsackievirus B3-resistant mice become susceptible in Se/vitamin E deficiency. Free Radical Biolology and Medicine 2003; 34: 12631270.
91.Cermelli, C, et al. Selenite inhibition of Coxsackie virus B5 replication: implications on the etiology of Keshan disease. Journal of Trace Elements in Medicine and Biology 2002; 16: 4146.
92.Chan, KP, et al. Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerging Infectious Diseases 2003; 9: 7885.
93.Ooi, MH, et al. Human enterovirus 71 disease in Sarawak, Malaysia: a prospective clinical, virological, and molecular epidemiological study. Clinical Infectious Diseases 2007; 44: 646656.
94.Chinese Center for Disease Control and Prevention and the Office of the World Health Organization in China. Report on the hand, foot and mouth disease outbreak in Fuyang City, Anhui Province and the prevention and control in China, May 2008 (http://www.wpro.who.int/NR/rdonlyres/591D6A7B-FB15-4E94-A1E9-1D3381847D60/0/HFMDCCDC20080515ENG.pdf). Accessed 29 July 2009.
95.Chung, PW, et al. Duration of enterovirus shedding in stool. Journal of Microbiology, Immunology, and Infection 2001; 34: 167170.
96.Tosato, G, Rocchi, G, Archetti, I. Epidemiological study of a ‘hand-foot-and-mouth disease’ outbreak observed in Rome in the fall of 1973. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie 1975; 230: 415421.
97.Wang, JR, et al. An outbreak of enterovirus 71 infection in Taiwan, 1998. II. Laboratory diagnosis and genetic analysis. Journal of Clinical Virology 2000; 17: 9199.
98.Ooi, MH, et al. Evaluation of different clinical sample types in diagnosis of human enterovirus 71-associated hand-foot-and-mouth disease. Journal of Clinical Microbiology 2007; 45: 18581866.
99.Kuramitsu, M, et al. Non-polio enterovirus isolation among families in Ulaanbaatar and Tov province, Mongolia: prevalence, intrafamilial spread, and risk factors for infection. Epidemiology and Infection 2005; 133: 11311142.
100.Welch, JB, et al. Detection of enterovirus viraemia in blood donors. Vox Sanguinis 2001; 80: 211215.
101.Donoso Mantke, O, et al. High prevalence of cardiotropic viruses in myocardial tissue from explanted hearts of heart transplant recipients and heart donors: a 3-year retrospective study from a German patients' pool. Journal of Heart and Lung Transplantation 2005; 24: 16321638.
102.Chow, KC, et al. Congenital enterovirus 71 infection: a case study with virology and immunohistochemistry. Clinical Infectious Diseases 2000; 31: 509512.
103.Nishikii, Y, et al. Favorable outcome in a case of perinatal enterovirus 71 infection. Pediatric Infectious Disease Journal 2002; 21: 886887.
104.Hsu, BM, Chen, CH, Wan, MT. Prevalence of enteroviruses in hot spring recreation areas of Taiwan. FEMS Immunology and Medical Microbiology 2008; 52: 253259.
105.Chen, CH, Hsu, BM, Wan, MT. Molecular detection and prevalence of enterovirus within environmental water in Taiwan. Journal of Applied Microbiology 2008; 104: 817823.
106.Faustini, A, et al. An outbreak of aseptic meningitis due to echovirus 30 associated with attending school and swimming in pools. International Journal of Infectious Diseases 2006; 10: 291297.
107.Centers for Disease Control and Prevention (CDC). Aseptic meningitis outbreak associated with echovirus 9 among recreational vehicle campers – Connecticut, 2003. Morbidity and Mortality Weekly Report 2004; 53: 710713.
108.Hauri, AM, et al. An outbreak of viral meningitis associated with a public swimming pond. Epidemiology and Infection 2005; 133: 291298.
109.Amvrosieva, TV, et al. Enteroviral infection outbreak in the Republic of Belarus: principal characteristics and phylogenetic analysis of etiological agents. Central European Journal of Public Health 2006; 14: 6773.
110.Lee, SH, Kim, SJ. Detection of infectious enteroviruses and adenoviruses in tap water in urban areas in Korea. Water Research 2002; 36: 248256.
111.Vivier, JC, Ehlers, MM, Grabow, WO. Detection of enteroviruses in treated drinking water. Water Research 2004; 38: 26992705.
112.Ehlers, MM, Grabow, WO, Pavlov, DN. Detection of enteroviruses in untreated and treated drinking water supplies in South Africa. Water Research 2005; 39: 22532258.
113.Croci, L, et al. Determination of enteroviruses, hepatitis A virus, bacteriophages and Escherichia coli in Adriatic Sea mussels. Journal of Applied Microbiology 2000; 88: 293298.
114.Beuret, C, Baumgartner, A, Schluep, J. Virus-contaminated oysters: a three-month monitoring of oysters imported to Switzerland. Applied and Environmental Microbiology 2003; 69: 22922297.
115.Dubois, E, et al. Diversity of enterovirus sequences detected in oysters by RT-heminested PCR. International Journal of Food Microbiology 2004; 92: 3543.
116.Gabrieli, R, et al. Enteric viruses in molluscan shellfish. New Microbiologica 2007; 30: 471475.
117.Le Guyader, FS, et al. Aichi virus, norovirus, astrovirus, enterovirus, and rotavirus involved in clinical cases from a French oyster-related gastroenteritis outbreak. Journal of Clinical Microbiology 2008; 46: 40114017.
118.Ambert-Balay, K, et al. Prevalence and genetic diversity of Aichi virus strains in stool samples from community and hospitalized patients. Journal of Clinical Microbiology 2008; 46: 12521258.
119.Goyer, M, et al. Seroprevalence distribution of Aichi virus among a French population in 2006–2007. Archives of Virology 2008; 153: 11711174.
120.Saoji, VA. Hand, foot and mouth disease in Nagpur. Indian Journal of Dermatolology, Venereology and Leprology 2008; 74: 133135.
121.Centre for Health Protection, Department of Health, Hong Kong. EV scan (http://www.chp.gov.hk/guideline1_year.asp?lang=en&id=502&pid=441&ppid=134&pppid=29). Accessed 28 July 2009.
122.Centre for Health Protection, Department of Health, Hong Kong. Guidelines on prevention of communicable diseases in schools/kindergartens/kindergartens-cum-child care centres/child care centres (revised January 2009) (http://www.chp.gov.hk/files/pdf/School_full_eng_20090115.pdf). Accessed 28 July 2009.
123.Wang, JR, et al. Change of major genotype of enterovirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000. Journal of Clinical Microbiology 2002; 40: 1015.
124.Podin, Y, et al. Sentinel surveillance for human enterovirus 71 in Sarawak, Malaysia: lessons from the first 7 years. BMC Public Health 2006; 6: 180.
125.Huang, SC, et al. Appearance of intratypic recombination of enterovirus 71 in Taiwan from 2002 to 2005. Virus Research 2008; 131: 250259.
126.Chan, YF, AbuBakar, S. Phylogenetic evidence for inter-typic recombination in the emergence of human enterovirus 71 subgenotypes. BMC Microbiology 2006; 6: 74.
127.Shih, SR, et al. Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998. Virus Research 2000; 68: 127136.
128.Li, ML, et al. The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology 2002; 293: 386395.
129.Hagiwara, A, Yoneyama, T, Takami, S, Hashimoto, I. Genetic and phenotypic characteristics of enterovirus 71 isolates from patients with encephalitis and with hand, foot and mouth disease. Archives of Virology 1984; 79: 273283.
130.Pérez-Vélez, CM, et al. Outbreak of neurologic enterovirus type 71 disease: a diagnostic challenge. Clinical Infectious Diseases 2007; 45: 950957.
131.Smith, TJ, et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 1986; 233: 12861293.
132.Shia, KS, et al. Design, synthesis, and structure-activity relationship of pyridyl imidazolidinones: a novel class of potent and selective human enterovirus 71 inhibitors. Journal of Medicinal Chemistry 2002; 45: 16441655.
133.Nolan, MA, et al. Survival after pulmonary edema due to enterovirus 71 encephalitis. Neurology 2003; 60: 16511656.
134.Prager, P, et al. Neurogenic pulmonary edema in enterovirus 71 encephalitis is not uniformly fatal but causes severe morbidity in survivors. Pediatric Critical Care Medicine 2003; 4: 377381.
135.Li, ZH, et al. Ribavirin reduces mortality in enterovirus 71-infected mice by decreasing viral replication. Journal of Infectious Diseases 2008; 197: 854857.
136.Liu, ML, et al. Type I interferons protect mice against enterovirus 71 infection. Journal of General Virology 2005; 86: 32633269.
137.McKinney, RE Jr., Katz, SL, Wilfert, CM. Chronic enteroviral meningoencephalitis in agammaglobulinemic patients. Reviews of Infectious Diseases 1987; 9: 334356.
138.Cheng, MF, et al. Clinical application of reverse-transcription polymerase chain reaction and intravenous immunoglobulin for enterovirus encephalitis. Japanese Journal of Infectious Diseases 2008; 61: 1824.
139.Moschovi, MA, et al. Enteroviral infections in children with malignant disease: a 5-year study in a single institution. Journal of Infection 2007; 54: 387392.
140.Jantausch, BA, et al. Maternal plasma transfusion in the treatment of disseminated neonatal echovirus 11 infection. Pediatric Infectious Disease Journal 1995; 14: 154155.
141.Wang, SM, et al. Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clinical Infectious Diseases 1999; 29: 184190.
142.Frange, P, et al. Enterovirus 71 meningoencephalitis during chemotherapy in a child with metastatic osteosarcoma. Journal of Pediatric Hematology Oncology 2007; 29: 566568.
143.Wang, SM, et al. Modulation of cytokine production by intravenous immunoglobulin in patients with enterovirus 71-associated brainstem encephalitis. Journal of Clinical Virology 2006; 37: 4752.
144.Galama, JM, et al. Antibodies against enteroviruses in intravenous Ig preparations: great variation in titres and poor correlation with the incidence of circulating serotypes. Journal of Medical Virology 1997; 53: 273276.
145.Wang, SM, et al. Therapeutic efficacy of milrinone in the management of enterovirus 71-induced pulmonary edema. Pediatric Pulmonology 2005; 39: 219223.
146.Wang, JN, et al. Critical management in patients with severe enterovirus 71 infection. Pediatrics International 2006; 48: 250256.
147.Wu, CN, et al. Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 2001; 20: 895904.
148.Chen, HF, et al. Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enterovirus 71. Vaccine 2006; 24: 29442951.
149.Tung, WS, et al. DNA vaccine constructs against enterovirus 71 elicit immune response in mice. Genetic Vaccines and Therapy 2007; 5: 6.
150.Chung, YC, et al. Immunization with virus-like particles of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge. Vaccine 2008; 26: 18551862.
151.Chen, HL, et al. Expression of VP1 protein in the milk of transgenic mice: a potential oral vaccine protects against enterovirus 71 infection. Vaccine 2008; 26: 28822889.
152.Arita, M, et al. An attenuated strain of enterovirus 71 belonging to genotype a showed a broad spectrum of antigenicity with attenuated neurovirulence in cynomolgus monkeys. Journal of Virology 2007; 81: 93869395.
153.Mizuta, K, et al. Cross-antigenicity among EV71 strains from different genogroups isolated in Yamagata, Japan, between 1990 and 2007. Vaccine 2009; 27: 31533158.
154.Lin, TY, Chu, C, Chiu, CH. Lactoferrin inhibits enterovirus 71 infection of human embryonal rhabdomyosarcoma cells in vitro. Journal of Infectious Diseases 2002; 186: 11611164.
155.Weng, TY, et al. Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Research 2005; 67: 3137.
156.Chen, HL, et al. Recombinant porcine lactoferrin expressed in the milk of transgenic mice protects neonatal mice from a lethal challenge with enterovirus type 71. Vaccine 2008; 26: 891898.
157.Keswick, BH, Gerba, CP, Goyal, SM. Occurrence of enteroviruses in community swimming pools. American Journal of Public Health 1981; 71: 10261030.
158.Begier, EM, et al. An outbreak of concurrent echovirus 30 and coxsackievirus A1 infections associated with sea swimming among a group of travelers to Mexico. Clinical Infectious Diseases 2008; 47: 616623.
159.Chan, YF, AbuBakar, S. Virucidal activity of Virkon S on human enterovirus. Medical Journal of Malaysia 2005; 60: 246248.
160.Abad, FX, Pintó, RM, Bosch, A. Disinfection of human enteric viruses on fomites. FEMS Microbiology Letters 1997; 156: 107111.
161.Chambon, M, et al. Virucidal efficacy of glutaraldehyde against enteroviruses is related to the location of lysine residues in exposed structures of the VP1 capsid protein. Applied and Environmental Microbiology 2004; 70: 17171722.
162.Zoni, R, et al. Investigation on virucidal activity of chlorine dioxide. experimental data on feline calicivirus, HAV and Coxsackie B5. Journal of Preventive Medicine and Hygiene 2007; 48: 9195.
163.Kawana, R, et al. Inactivation of human viruses by povidone-iodine in comparison with other antiseptics. Dermatology 1997; 195 (Suppl. 2): 2935.
164.Kampf, G, Kramer, A. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clinical Microbiology Reviews 2004; 17: 863893.
165.Wutzler, P, Sauerbrei, A. Virucidal efficacy of a combination of 0·2% peracetic acid and 80% (v/v) ethanol (PAA-ethanol) as a potential hand disinfectant. Journal of Hospital Infection 2000; 46: 304308.
166.Kramer, A, et al. Virucidal activity of a new hand disinfectant with reduced ethanol content: comparison with other alcohol-based formulations. Journal of Hospital Infection 2006; 62: 98106.
167.Macinga, DR, Sattar, SA, Jaykus, LA, Arbogast, JW. Improved inactivation of nonenveloped enteric viruses and their surrogates by a novel alcohol-based hand sanitizer. Applied and Environmental Microbiology 2008; 74: 50475052.
168.Scientific Committee on Enteric Infections and Foodborne Diseases, Centre for Health Protection, Hong Kong. Strategies for the Prevention and Control of EV71 Infection in Hong Kong (http://www.chp.gov.hk/files/pdf/sas4_ev71_20050927.pdf). Accessed 24 July 2009.
169.Kao, RY, et al. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chemistry and Biology 2004; 11: 12931299.
170.Herrero, LJ, et al. Molecular epidemiology of enterovirus 71 in peninsular Malaysia, 1997–2000. Archives of Virology 2003; 148: 13691385.
171.Chua, KB, et al. Genetic diversity of enterovirus 71 isolated from cases of hand, foot and mouth disease in the 1997, 2000 and 2005 outbreaks, Peninsular Malaysia. Malaysian Journal of Pathology 2007; 29: 6978.
172.Abubakar, S, et al. Molecular detection of enteroviruses from an outbreak of hand, foot and mouth disease in Malaysia in 1997. Scandinavian Journal of Infectious Diseases 1999; 31: 331335.
173.Liu, CC, et al. An outbreak of enterovirus 71 infection in Taiwan, 1998: epidemiologic and clinical manifestations. Journal of Clinical Virology 2000; 17: 2330.
174.Chen, KT, et al. Epidemiologic features of hand-foot-mouth disease and herpangina caused by enterovirus 71 in Taiwan, 1998–2005. Pediatrics 2007; 120: e244252.
175.Sanders, SA, et al. Molecular epidemiology of enterovirus 71 over two decades in an Australian urban community. Archives of Virology 2006; 151: 10031013.
176.McMinn, P, Stratov, I, Nagarajan, L, Davis, S. Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clinical Infectious Diseases 2001; 32: 236242.
177.AbuBakar, S, et al. Enterovirus 71 outbreak, Brunei. Emerging Infectious Diseases 2009; 15: 7982.
178.Ministry of Health, People's Republic of China. http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohbgt/s3582/200902/39079.htm. Accessed on 22 July 2009.
179.Yang, F, et al. Enterovirus 71 outbreak in the People's Republic of China in 2008. Journal of Clinical Microbiology 2009; 47: 23512352.
181.Li, L, et al. Genetic characteristics of human enterovirus 71 and coxsackievirus A16 circulating from 1999 to 2004 in Shenzhen, People's Republic of China. Journal of Clinical Microbiology 2005; 43: 38353839.
182.Lin, KH, et al. Evolution of EV71 genogroup in Taiwan from 1998 to 2005: an emerging of subgenogroup C4 of EV71. Journal of Medical Virology 2006; 78: 254262.
183.Hosoya, M, et al. Genetic diversity of enterovirus 71 associated with hand, foot and mouth disease epidemics in Japan from 1983 to 2003. Pediatric Infectious Disease Journal 2006; 25: 691694.
184.Tu, PV, et al. Epidemiologic and virologic investigation of hand, foot, and mouth disease, southern Vietnam, 2005. Emerging Infectious Diseases 2007; 13: 17331741.
185.Huang, YP, et al. The circulation of subgenogroups B5 and C5 of enterovirus 71 in Taiwan from 2006 to 2007. Virus Research 2008; 137: 206212.
186.Ang, LW, et al. Epidemiology and control of hand, foot and mouth disease in Singapore, 2001–2007. Annals of the Academy of Medicine Singapore 2009; 38: 106112.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed