Skip to main content
×
Home

The impact of household transmission on duration of outpatient colonization with methicillin-resistant Staphylococcus aureus

  • E. LAUTENBACH (a1) (a2) (a3) (a4), P. TOLOMEO (a3), I. NACHAMKIN (a4) (a5), B. HU (a3) (a5) and T. E. ZAOUTIS (a2) (a3) (a4) (a6)...
Summary
SUMMARY

We identified eight consecutive patients who presented with a skin or soft tissue infection due to MRSA. Of seven household members of these cases, three were colonized with MRSA. The mean duration of MRSA colonization in index cases was 33 days (range 14–104), while mean duration of colonization in household cases was 54 days (range 12–95). There was a borderline significant association between having a concurrent colonized household member and a longer duration of colonization (mean 44 days vs. 26 days, P=0·08).

Copyright
Corresponding author
*Author for correspondence: Dr E. Lautenbach, University of Pennsylvania School of Medicine, Center for Clinical Epidemiology and Biostatistics, 825 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, USA. (Email: ebbing@mail.med.upenn.edu)
References
Hide All
1.National Nosocomial Infections Surveillance (NNIS) System Report. Data summary from January 1992 through June 2004, issued October 2004. American Journal of Infection Control 2004; 32: 470485.
2.Herold BC, et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. Journal of the American Medical Asssociation 1998; 279: 593598.
3.Wagenvoort JH, et al. Risk of re-introduction of methicillin-resistant Staphylococcus aureus into the hospital by intrafamilial spread from and to healthcare workers. Journal of Hospital Infection 2005; 59: 6768.
4.Huang YC, et al. Nasal carriage of methicillin-resistant Staphylococcus aureus in household contacts of children with community-acquired diseases in Taiwan. Pediatric Infectious DiseasesJournal 2007; 26: 10661068.
5.Lautenbach E, et al. Surveillance cultures for detection of methicillin-resistant Staphylococcus aureus: Diagnostic yield of anatomic sites and comparison of provider- and patient-collected samples. Infection Control and Hospital Epidemiology 2009; 30: 380382.
6.Han Z, et al. Evaluation of mannitol salt agar, CHROMagar™ Staph aureus and CHROMagar™ MRSA for detection of methicillin-resistant Staphylococcus aureus from nasal swab specimens. Journal of Medical Microbiology 2007; 56: 4346.
7.Peacock SJ, et al. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis as tools for typing Staphylococcus aureus isolates in a microepidemiological setting. Journal of Clinical Microbiology 2002; 40: 37643770.
8.Tenover FC, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. Journal of Clinical Microbiology 1995; 33: 22332239.
9.Zhang K, et al. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. Journal of Clinical Microbiology 2005; 43: 50265033.
10.McDougal LK, et al. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. Journal of Clinical Microbiology 2003; 41: 51135120.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 98 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.