Skip to main content Accessibility help
×
Home

Influence of age, severity of infection, and co-infection on the duration of respiratory syncytial virus (RSV) shedding

  • P. K. MUNYWOKI (a1), D. C. KOECH (a1), C. N. AGOTI (a1), N. KIBIRIGE (a1), J. KIPKOECH (a1), P. A. CANE (a2), G. F. MEDLEY (a3) and D. J. NOKES (a1) (a3)...

Summary

RSV is the most important viral cause of pneumonia and bronchiolitis in children worldwide and has been associated with significant disease burden. With the renewed interest in RSV vaccines, we provide realistic estimates on duration, and influencing factors on RSV shedding which are required to better understand the impact of vaccination on the virus transmission dynamics. The data arise from a prospective study of 47 households (493 individuals) in rural Kenya, followed through a 6-month period of an RSV seasonal outbreak. Deep nasopharyngeal swabs were collected twice each week from all household members, irrespective of symptoms, and tested for RSV by multiplex PCR. The RSV G gene was sequenced. A total of 205 RSV infection episodes were detected in 179 individuals from 40 different households. The infection data were interval censored and assuming a random event time between observations, the average duration of virus shedding was 11·2 (95% confidence interval 10·1–12·3) days. The shedding durations were longer than previous estimates (3·9–7·4 days) based on immunofluorescence antigen detection or viral culture, and were shown to be strongly associated with age, severity of infection, and revealed potential interaction with other respiratory viruses. These findings are key to our understanding of the spread of this important virus and are relevant in the design of control programmes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of age, severity of infection, and co-infection on the duration of respiratory syncytial virus (RSV) shedding
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of age, severity of infection, and co-infection on the duration of respiratory syncytial virus (RSV) shedding
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of age, severity of infection, and co-infection on the duration of respiratory syncytial virus (RSV) shedding
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/

Corresponding author

* Author for correspondence: Dr P. K. Munywoki, KEMRI – Wellcome Trust Research Programme, Centre for Geographic Medicine Research – Coast, Hospital Road, P.O. Box 230-80108, Kilifi, Kenya. (Email: pmunywoki@kemri-wellcome.org)

References

Hide All
1. Nair, H, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 2010; 375: 15451555.
2. Glezen, WP, et al. Risk of primary infection and reinfection with respiratory syncytial virus. American Journal of Diseases of Children 1986; 140: 543546.
3. Waris, M, et al. Shedding of infectious virus and virus antigen during acute infection with respiratory syncytial virus. Journal of Medical Virology 1992; 38: 111116.
4. Hall, CB, Douglas, RG Jr., Geiman, JM. Respiratory syncytial virus infections in infants: quantitation and duration of shedding. Journal of Pediatrics 1976; 89: 1115.
5. Hall, CB, Douglas, RG Jr., Geiman, JM. Quantitative shedding patterns of respiratory syncytial virus in infants. Journal of Infectious Diseases 1975; 132: 151156.
6. Frank, AL, et al. Patterns of shedding of myxoviruses and paramyxoviruses in children. Journal of Infectious Diseases 1981; 144: 433441.
7. Munywoki, PK, et al. The source of respiratory syncytial virus infection in infants: a household cohort study in rural Kenya. Journal of Infectious Diseases. Published online: 25 12 2013 . doi: 10.1093/infdis/jit828.
8. Scott, JA, et al. Profile: The Kilifi Health and Demographic Surveillance System (KHDSS). International Journal of Epidemiology 2012; 41: 650657.
9. Agoti, CN, et al. Genetic relatedness of infecting and reinfecting respiratory syncytial virus strains identified in a birth cohort from rural kenya. Journal of Infectious Diseases 2012; 206: 15321541.
10. Hall, CB, et al. Respiratory syncytial virus infections within families. New England Journal Medicine 1976; 294: 414419.
11. Hall, CB, Long, CE, Schnabel, KC. Respiratory syncytial virus infections in previously healthy working adults. Clinical Infectious Diseases 2001; 33: 792796.
12. Okiro, EA, et al. Duration of shedding of respiratory syncytial virus in a community study of Kenyan children. BMC Infectious Diseases 2010; 10: 15.
13. Munywoki, PK, et al. Improved detection of respiratory viruses in pediatric outpatients with acute respiratory illness by real-time PCR using nasopharyngeal flocked swabs. Journal of Clinical Microbiology 2011; 49: 33653367.
14. Reis, AD, et al. Comparison of direct immunofluorescence, conventional cell culture and polymerase chain reaction techniques for detecting respiratory syncytial virus in nasopharyngeal aspirates from infants. Journal of the São Paulo Institute of Tropical Medicine 2008; 50: 3740.
15. Madhi, SA, et al. Increased burden of respiratory viral associated severe lower respiratory tract infections in children infected with human immunodeficiency virus type-1. Journal of Pediatrics 2000; 137: 7884.
16. Kenya National Bureau of Statistics (KNBS) and ICF Macro. Kenya Demograpghic and Health Survey 2008–09. Calverton, Maryland, USA: KNBS and ICF Macro, 2010.
17. Cubie, HA, et al. Detection of respiratory syncytial virus nucleic acid in archival postmortem tissue from infants. Pediatric Pathology and Laboratory Medicine 1997; 17: 927938.
18. Schwarze, J, et al. Latency and persistence of respiratory syncytial virus despite T cell immunity. American Journal of Respiratory Critical Care Medicine 2004; 169: 801805.
19. Lin, WH, et al. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proceedings of the National Academy of Sciences USA 2012; 109: 1498914994.
20. DeVincenzo, JP, El, Saleeby CM, Bush, AJ. Respiratory syncytial virus load predicts disease severity in previously healthy infants. Journal of Infectious Diseases 2005; 191: 18611868.
21. Kuypers, J, Wright, N, Morrow, R. Evaluation of quantitative and type-specific real-time RT-PCR assays for detection of respiratory syncytial virus in respiratory specimens from children. Journal of Clinical Virology 2004; 31: 123129.
22. Devincenzo, JP. Natural infection of infants with respiratory syncytial virus subgroups A and B: a study of frequency, disease severity, and viral load. Pediatric Research 2004; 56: 914917.

Keywords

Type Description Title
WORD
Supplementary materials

Munywoki Supplementary Material
Supplementary Material

 Word (570 KB)
570 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed