Skip to main content Accessibility help
×
×
Home

Investigating pathogen burden in relation to a cumulative deficits index in a representative sample of US adults

  • G. A. Noppert (a1) (a2) (a3), A. E. Aiello (a3) (a4), A. M. O'Rand (a2) and H. J. Cohen (a1) (a5)
Abstract

Pathogen burden is a construct developed to assess the cumulative effects of multiple, persistent pathogens on morbidity and mortality. Despite the likely biological wear and tear on multiple body systems caused by persistent infections, few studies have examined the impact of total pathogen burden on such outcomes and specifically on preclinical markers of dysfunction. Using data from two waves of the National Health and Nutrition Examination Survey, we compared three alternative methods for measuring pathogen burden, composed of mainly persistent viral infections, using a cumulative deficits index (CDI) as an outcome: single pathogen associations, a pathogen burden summary score and latent class analyses. We found significant heterogeneity in the distribution of the CDI by age, sex, race/ethnicity and education. There was an association between pathogen burden and the CDI by all three metrics. The latent class classification of pathogen burden showed particularly strong associations with the CDI; these associations remained after controlling for age, sex, body mass index, smoking, race/ethnicity and education. Our results suggest that pathogen burden may influence early clinical indicators of poor health as measured by the CDI. Our results are salient since we were able to detect these associations in a relatively young population. These findings suggest that reducing pathogen burden and the specific pathogens that drive the CDI may provide a target for preventing the early development of age-related physiological changes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Investigating pathogen burden in relation to a cumulative deficits index in a representative sample of US adults
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Investigating pathogen burden in relation to a cumulative deficits index in a representative sample of US adults
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Investigating pathogen burden in relation to a cumulative deficits index in a representative sample of US adults
      Available formats
      ×
Copyright
Corresponding author
Author for correspondence: G. A. Noppert, E-mail: gnop@email.unc.edu
References
Hide All
1.Simanek, AM, Dowd, JB and Aiello, AE (2008) Persistent pathogens linking socioeconomic position and cardiovascular disease in the US. International Journal of Epidemiology 38, 775787.
2.Simanek, AM et al. (2011) Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS ONE 6, e16103.
3.Tarter, KD et al. (2014) Persistent viral pathogens and cognitive impairment across the life course in the third national health and nutrition examination survey. Journal of Infectious Disease 209, 837844.
4.Dowd, JB et al. (2017) Persistent herpesvirus infections and telomere attrition over 3 years in the Whitehall II Cohort. Journal of Infectious Disease 6, e16103.
5.Pawelec, G, Goldeck, D and Derhovanessian, E (2014) Inflammation, ageing and chronic disease. Current Opinion in Immunology 29, 2328.
6.Aiello, AE et al. (2008) Persistent infection, inflammation, and functional impairment in older Latinos. The Journals of Gerontology Series A Biological Sciences and Medical Sciences 63, 610618.
7.Zhu, J (2000) Effects of total pathogen burden on coronary artery disease risk and C-reactive protein levels. American Journal of Cardiology 85, 140146.
8.Simanek, A et al. (2015) Unpacking the ‘black box’ of total pathogen burden: is number or type of pathogens most predictive of all-cause mortality in the United States? Epidemiology and Infection 143, 26242634.
9.Zajacova, A, Dowd, JB and Aiello, AE (2009) Socioeconomic and race/ethnic patterns in persistent infection burden among U.S. adults. The Journals of Gerontology – Series A Biological Sciences and Medical Sciences 64, 272279.
10.Meier, HC et al. (2016) Early life socioeconomic position and immune response to persistent infections among elderly Latinos. Social Science and Medicine 166, 7785.
11.Dowd, JB et al. (2007) Socioeconomic gradients in immune response to latent infection. American Journal of Epidemiology 167, 112120.
12.Dowd, JB, Zajacova, A and Aiello, A (2009) Early origins of health disparities: burden of infection, health, and socioeconomic status in U.S. children. Social Science and Medicine 68, 699707.
13.Katan, M et al. (2013) Infectious burden and cognitive function: the Northern Manhattan Study. Neurology 80, 12091215.
14.Howlett, SE and Rockwood, K (2013) New horizons in frailty: ageing and the deficit-scaling problem. Age and Ageing 42, 416423.
15.King, KE, Fillenbaum, GG and Cohen, HJ (2017) A cumulative deficit laboratory test-based frailty index: personal and neighborhood associations. Journal of the American Geriatrics Society 65, 19811987.
16.Rockwood, K and Mitnitski, A (2007) Frailty in relation to the accumulation of deficits. The Journals of Gerontology Series A Biological Sciences and Medical Sciences 62, 722727.
17.Cohen, HJ, Harris, T and Pieper, CF (2003) Coagulation and activation of inflammatory pathways in the development of functional decline and mortality in the elderly. American Journal of Medicine 114, 180187.
18.Bray, BC, Lanza, ST and Tan, X (2015) Eliminating bias in classify-analyze approaches for latent class analysis. Structural Equation Modeling: A Multidisciplinary Journal 22, 111.
19.Barker, D et al. (2002) Fetal origins of adult disease: strength of effects and biological basis. International Journal of Epidemiology 31, 12351239.
20.Belsky, DW et al. (2015) Quantification of biological aging in young adults. Proceedings of the National Academy of Sciences 112, E4104E4110.
21.Bjerke, W (2011) The impact of infectious disease on chronic disease: a review of contemporary findings. Journal of Social, Behavioral, and Health Sciences 5, 4557.
22.O'Connor, SM, Taylor, CE and Hughes, JM (2006) Emerging infectious determinants of chronic diseases. Emerging Infectious Diseases 12, 10511057.
23.Smith, J and Robinson, N (2002) Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. Journal of Infectious Disease 186, S3S28.
24.McQuillan, G et al. (2004) Racial and ethnic differences in the seroprevalence of 6 infectious diseases in the United States: data from NHANES III, 1988–1994. American Journal of Public Health 94, 19521958.
25.Malaty, H, El-Kasabany, A and Graham, D (2002) Age at acquisition of Helicobacter pylori infection: a follow-up study from infancy to adulthood. Lancet 359, 931935.
26.Epstein, S et al. (2000) Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arteriosclerosis, Thrombosis, and Vascular Biology 20, 14171420.
27.Izadi, M et al. (2012) Helicobacter species in the atherosclerotic plaques of patients with coronary artery disease. Cardiovascular Pathology 21, 307311.
28.Melnick, JL et al. (1994) Cytomegalovirus DNA in arterial walls of patients with atherosclerosis. Journal of Medical Virology 42, 170174.
29.Epstein, S (2002) The multiple mechanisms by which infection may contribute to atherosclerosis development and course. Circulation Research 90, 24.
30.Roberts, ET et al. (2010) Cytomegalovirus antibody levels, inflammation, and mortality among elderly latinos over 9 years of follow-up. American Journal of Epidemiology 172, 363371.
31.Simanek, A et al. (2014) Herpesviruses, inflammatory markers and incident depression in a longitudinal study of Detroit residents. Psychoneuroendrocrinology 50, 139148.
32.Wang, GC et al. (2010) Cytomegalovirus infection and the risk of mortality and frailty in older women: a prospective observational cohort study. American Journal of Epidemiology 171, 11441152.
33.Aiello, AE et al. (2009) Socioeconomic and psychosocial gradients in cardiovascular pathogen burden and immune response: the multi-ethnic study of atherosclerosis. Brain, Behavior, and Immuunity 23, 663671.
34.Zajacova, A, Dowd, J and Aiello, A (2009) Socioeconomic and race/ethnic patterns in persistent infection burden among US adults. The Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 64, 272279.
35.Rockwood, K et al. (2006) Long-term risks of death and institutionalization of elderly people in relation to deficit accumulation at age 70. Journal of American Geriatrics Society 54, 975979.
36.Mitnitski, AB et al. (2002) Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatrics 2, 1.
37.Lubke, GH and Muthén, B (2005) Investigating population heterogeneity with factor mixture models. Psychoogical Methods 10, 2139.
38.Aiello, AE et al. (2008) Persistent infection, inflammation, and functional impairment in older Latinos. The Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 63A, 610618.
39.Aiello, AE, Haan, MM, Blythe, L et al. (2006) The influence of latent viral infection on rate of cognitive decline over 4 years. Journal of American Geriatrics Society 54, 10461054.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Noppert et al. supplementary material
Noppert et al. supplementary material 1

 Word (258 KB)
258 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed