Skip to main content Accessibility help
×
Home

A meta-analysis of the effect of dose and age at exposure on shedding of Mycobacterium avium subspecies paratuberculosis (MAP) in experimentally infected calves and cows

  • R. M. MITCHELL (a1), G. F. MEDLEY (a2), M. T. COLLINS (a3) and Y. H. SCHUKKEN (a1)

Summary

A meta-analysis was performed using all published and one unpublished long-term infection-challenge experiments to quantify the age- and dose-dependence of early and late shedding of Mycobacterium avium subsp. paratuberculosis (MAP) in cattle. There were 194 animals from 17 studies that fulfilled the inclusion criteria, of which 173 received a known dose of MAP and 21 were exposed naturally. Results from parametric time-to-event models indicated that challenging older calves or using multiple-exposure experimental systems resulted in a smaller proportion and shorter duration of early shedding as well as slower transition to late shedding from latent compartments. Calves exposed naturally showed variable infection progression rates, not dissimilar to other infection routes. The log-normal distribution was most appropriate for modelling infection-progression events. The infection pattern revealed by the modelling allowed better understanding of low-grade endemicity of MAP in cattle, and the parameter estimates are the basis for future transmission dynamics modelling.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A meta-analysis of the effect of dose and age at exposure on shedding of Mycobacterium avium subspecies paratuberculosis (MAP) in experimentally infected calves and cows
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A meta-analysis of the effect of dose and age at exposure on shedding of Mycobacterium avium subspecies paratuberculosis (MAP) in experimentally infected calves and cows
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A meta-analysis of the effect of dose and age at exposure on shedding of Mycobacterium avium subspecies paratuberculosis (MAP) in experimentally infected calves and cows
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr R. M. Mitchell, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA. (Email: rmm37@cornell.edu)

References

Hide All
1.Clarke, CJ. The pathology and pathogenesis of paratuberculosis in ruminants and other species. Journal of Comparative Pathology 1997; 116: 217261.
2.Whitlock, RH, Buergelt, C. Preclinical and clinical manifestations of paratuberculosis (including pathology). Veterinary Clinics of North America. Food Animal Practice 1996; 12: 345356.
3.Shulaw, WP, Larew-Naugle, A. Paratuberculosis: a food safety concern? In: Torrence, ME, Isaacson, RE, eds. Microbial Food Safety in Animal Agriculture. Ames, IA: Iowa State Press, 2003.
4.Collins, MT, Zhao, BY. Comparison of a commercial serum antibody ELISA gamma interferon test kit, and radiometric fecal culture for early diagnosis of paratuberculosis in experimentally infected female Holstein calves. In: Chiodini, RJ, Collins, MT, Bassey, EO, eds. Proceedings of the 4th International Colloquium on Paratuberculosis. Cambridge, UK: International Association for Paratuberculosis, 1994, pp. 6776.
5.Stewart, DJ, et al. A long-term bacteriological and immunological study in Holstein-Friesian cattle experimentally infected with Mycobacterium avium subsp. paratuberculosis and necropsy culture results for Holstein-Friesian cattle, Merino sheep and Angora goats. Veterinary Microbiology 2007; 122: 8396.
6.Larsen, AB, Merkal, RS, Cutlip, RC. Age of cattle as related to resistance to infection with Mycobacterium paratuberculosis. American Journal of Veterinary Research 1975; 36: 255257.
7.Rankin, JD. The estimation of doses of Mycobacterium johnei suitable for the production of Johne's disease in cattle. Journal of Pathology and Bacteriology 1959; 77: 638642.
8.Medema, GJ, et al. Assessment of the dose-response relationship of Campylobacter jejuni. International Journal of Food Microbiology 1996; 30: 101111.
9.French, NP, et al. Dose-response relationships for foot and mouth disease in cattle and sheep. Epidemiology and Infection 2002; 128: 325332.
10.Windsor, PA, Whittington, RJ. Evidence for age susceptibility of cattle to Johne's disease. Veterinary Journal 2010; 184: 3744.
11.Medley, GF, et al. Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control. Nature Medicine 2001; 7: 619624.
12.Collins, MT, et al. Consensus recommendations on diagnostic testing for the detection of paratuberculosis in cattle in the United States. Journal of the American Veterinary Medical Association 2006; 229: 19121919.
13.Whitlock, RH, et al. ELISA and fecal culture for paratuberculosis (Johne's disease): sensitivity and specificity of each method. Veterinary Microbiology 2000; 77: 387398.
14.Larsen, AB, Merkal, RS, Vardaman, TH. Survival time of Mycobacterium paratuberculosis. American Journal of Veterinary Research 1956; 17: 549551.
15.Whittington, RJ, et al. Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Applied and Environmental Microbiology 2004; 70: 29893004.
16.Mitchell, RM, et al. Simulation modeling to evaluate the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) on commercial dairy farms in the United States. Preventive Veterinary Medicine 2008; 83: 360380.
17.Keeling, MJ, Grenfell, BT. Effect of variability in infection period on the persistence and spatial spread of infectious diseases. Mathematical Biosciences 1998; 147: 207226.
18.Taylor, AW. Experimental Johne's disease in cattle. Journal of Comparative Pathology 1953; 63: 355367.
19.Rankin, JD. The experimental infection of cattle with Mycobacterium johnei. I. Calves inoculated intravenously. Journal of Comparative Pathology 1958; 68: 331337.
20.Rankin, JD. The experimental infection of cattle with Mycobacterium johnei. II. Adult cattle inoculated intravenously. Journal of Comparative Pathology 1961; 71: 69.
21.Rankin, JD. The experimental infection of cattle with Mycobacterium johnei. III. Calves maintained in an infectious environment. Journal of Comparative Pathology 1961; 71: 1015.
22.Rankin, JD. The experimental infection of cattle with Mycobacterium johnei. IV. Adult cattle maintained in an infectious environment. Journal of Comparative Pathology 1962; 72: 113117.
23.Larsen, AB, Merkal, RS, Moon, HW. Evaluation of a paratuberculosis vaccine given to calves before infection. American Journal of Veterinary Research 1974; 35: 367369.
24.Larsen, AB, Miller, JM, Merkal, RS. Subcutaneous exposure of calves to Myobacterium paratuberculosis compared with intravenous and oral exposures. American Journal of Veterinary Research 1977; 38: 16691671.
25.Thorel, MF, et al. Experimental paratuberculosis: biological diagnosis in calves inoculated with strains of mycobactin-dependent mycobacteria [in French]. Annals of Veterinary Research 1985; 16: 7–16.
26.Milner, AR, et al. Analysis by ELISA and Western blotting of antibody reactivities in cattle infected with Mycobacterium paratuberculosis after absorption of serum with M phlei. Research in Veterinary Science 1987; 42: 140144.
27.Lepper, AW, et al. Sequential bacteriological observations in relation to cell-mediated and humoral antibody responses of cattle infected with Mycobacterium paratuberculosis and maintained on normal or high iron intake. Australian Veterinary Journal 1989; 66: 5055.
28.McDonald, WL, et al. Evaluation of diagnostic tests for Johne's disease in young cattle. Australian Veterinary Journal 1999; 77: 113119.
29.Waters, WR, et al. Early induction of humoral and cellular immune responses during experimental Mycobacterium avium subsp. paratuberculosis infection of calves. Infection and Immunity 2003; 71: 51305138.
30.Stabel, JR, Palmer, MV, Whitlock, RH. Immune responses after oral inoculation of weanling bison or beef calves with a bison or cattle isolate of Mycobacterium avium subsp. paratuberculosis. Journal of Wildlife Diseases 2003; 39: 545555.
31.Pollock, JM, Neill, SD. Mycobacterium bovis infection and tuberculosis in cattle. Veterinary Journal 2002; 163: 115127.
32.Kao, RR, et al. Mycobacterium bovis shedding patterns from experimentally infected calves and the effect of concurrent infection with bovine viral diarrhoea virus. Journal of the Royal Society, Interface 2007; 4: 545551.
33.Cohen, T, et al. Exogenous re-infection and the dynamics of tuberculosis epidemics: local effects in a network model of transmission. Journal of the Royal Society Interface/the Royal Society 2007; 4: 523531.
34.Rogers, WH. Regression standard errors in clustered samples. Stata Technical Bulletin 1993; 13: 1923.
35.Cleves, MA, et al. Frailty Models. An introduction to survival analysis using Stata. College Station, Tex.: Stata Press, 2008, pp. 302323.
36.Allison, PD. Estimating parametric regression models with PROC LIFEREG. In: Whatley, J, ed. Survival Analysis Using SAS: A Practical Guide. Cary, NC: SAS Institute, 1995, pp. 61–110.
37.Wooldridge, JM. Partial likelihood methods for panel data and cluster samples. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: MIT Press, 2002, pp. 401409.
38.Dohoo, IR, Martin, W, Stryhn, H. Modelling survival data. In: McPike, SM, ed. Veterinary Epidemiologic Research. Charlottetown, P.E.I.: AVC Inc., 2003, pp. 409457.
39.Begg, DJ, Whittington, RJ. Experimental animal infection models for Johne's disease, an infectious enteropathy caused by Mycobacterium avium subsp. paratuberculosis. Veterinary Journal 2008; 176: 129145.
40.Weber, MF, et al. Age at which dairy cattle become Mycobacterium avium subsp. paratuberculosis faecal culture positive. Preventive Veterinary Medicine 2010; 97: 2936.
41.van Roermund, HJW, et al. Horizontal transmission of Mycobacterium avium subsp. paratuberculosis in cattle in an experimental setting: calves can transmit the infection to other calves. Veterinary Microbiology 2007; 122: 270279.
42.Sweeney, RW, et al. Isolation of Mycobacterium paratuberculosis after oral inoculation in uninfected cattle. American Journal of Veterinary Research 1992; 53: 13121314.
43.Groenendaal, H, et al. A simulation of Johne's disease control. Preventive Veterinary Medicine 2002; 54: 225245.
44.Chapagain, PP, et al. A mathematical model of the dynamics of Salmonella Cerro infection in a US dairy herd. Epidemiology and Infection 2008; 136: 263272.
45.USDA. Dairy 2002 Part II: Changes in the United States Dairy Industry, 1991–2002. Fort Collins, CO: USDA: APHIS: VS, CEAH, National Animal Health Monitoring System, 2002; no. N388.0603.
46.Whitlock, RH, et al. MAP Super-shedders: another factor in the control of Johne's disease. In: Nielsen, SS, ed. 8th International Colloquium on Paratuberculosis. Royal Veterinary and Agricultural University, 2005, pp. 42.
47.Dushoff, J. Incorporating immunological ideas in epidemiological models. Journal of Theoretical Biology 1996; 180: 181187.
48.Pithua, P, et al. Lack of evidence for fecal shedding of Mycobacterium avium subsp. paratuberculosis in calves born to fecal culture positive dams. Preventive Veterinary Medicine 2010; 93: 242245.
49.Collins, MT, Morgan, IR. Simulation model of paratuberculosis control in a dairy herd. Preventive Veterinary Medicine 1992; 14: 2132.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed