Skip to main content

Methicillin-resistant Staphylococcus aureus colonisation: epidemiological and molecular characteristics in an acute-care tertiary hospital in Singapore

  • H. L. Htun (a1), W. M. Kyaw (a1), P. F. de Sessions (a2), L. Low (a2), M. L. Hibberd (a2) (a3), A. Chow (a1) (a4) (a5) and Y. S. Leo (a4) (a6) (a7)...

Current knowledge of methicillin-resistant Staphylococcus aureus (MRSA) colonisation in relation to epidemiological characteristics is incomplete. We conducted a cross-sectional study at an acute-care tertiary infectious diseases hospital of MRSA isolates identified through routine surveillance from January 2009 to December 2011. We randomly selected 205 MRSA isolates (119 inpatients) from 798 isolates (427 inpatients) for molecular profiling using multilocus sequence typing. Multilevel multinomial logistic regression was used to estimate odds ratio (OR) assessing the predilection of MRSA strains for anatomic sites, and associations of strains with human immunodeficiency virus (HIV) infection. The most frequent sequence types (STs) were 239, 22 and 45. The proportion of ST22 increased over the sampling period, replacing ST239 as the dominant lineage. However, ST239 remained the most prevalent among HIV-seropositive individuals who were six times more likely to be colonised with this strain than non-HIV patients (adjusted OR (aOR) 6.44, 95% confidence interval (CI) 1.94–21.36). ST45 was >24 times more likely to be associated with perianal colonisation than in the nares, axillae and groin sites (aOR 24.20, 95% CI 1.45–403.26). This study underlines the clonal replacement of MRSA in Singapore as previously reported but revealed, in addition, key strain differences between HIV-infected and non-infected individuals hospitalised in the same environment.

Corresponding author
Author for correspondence: A. Chow, E-mail:
Hide All
1.Esuvaranathan, K et al. (1992) A study of 245 infected surgical wounds in Singapore. Journal of Hospital Infection 21, 231240.
2.Cosgrove, SE et al. (2005) The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infection Control and Hospital Epidemiology 26, 166174.
3.Coello, R et al. (1997) Risk factors for developing clinical infection with methicillin-resistant Staphylococcus aureus (MRSA) amongst hospital patients initially only colonized with MRSA. Journal of Hospital Infection 37, 3946.
4.Balm, MN et al. (2013) Progression from new methicillin-resistant Staphylococcus aureus colonisation to infection: an observational study in a hospital cohort. BMC Infectious Diseases 13, 491.
5.Chipolombwe, J et al. (2016) Methicillin-resistant Staphylococcus aureus multiple sites surveillance: a systemic review of the literature. Infection and Drug Resistance 9, 35.
6.Stefani, S et al. (2012) Methicillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. International Journal of Antimicrobial Agents 39, 273282.
7.Hsu, L-Y et al. (2015) Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system. Genome Biology 16, 81.
8.Holden, MT et al. (2013) A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Research 23, 653664.
9.Win, M-K et al. (2015) Review of a two-year methicillin-resistant Staphylococcus aureus screening program and cost-effectiveness analysis in Singapore. BMC Infectious Diseases 15, 391.
10.Win, M-K et al. (2013) Evaluation of universal methicillin-resistant Staphylococcus aureus screening using nasal polymerase chain reaction compared with nasal, axilla, and groin and throat and perianal cultures in a hospital setting. Infection Control and Hospital Epidemiology 34, 13351337.
11.Inouye, M et al. (2014) SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Medicine 6, 90.
12.Enright, MC et al. (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of Clinical Microbiology 38, 10081015.
13.Charlson, M et al. (1994) Validation of a combined comorbidity index. Journal of Clinical Epidemiology 47, 12451251.
14.Field, N et al. (2014) Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID): an extension of the STROBE statement. The Lancet Infectious Diseases 14, 341352.
15.Teo, J et al. (2013) ST22 and ST239 MRSA duopoly in Singaporean hospitals: 2006–2010. Epidemiology and Infection 141, 153157.
16.Chow, A et al. (2017) MRSA transmission dynamics among interconnected acute, intermediate-term, and long-term healthcare facilities in Singapore. Clinical Infectious Diseases 64(Suppl_2), S76S81.
17.Campanile, F et al. (2009) Hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) in Italy. Annals of Clinical Microbiology and Antimicrobials 8, 22.
18.Song, J-H et al. (2011) Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. Journal of Antimicrobial Chemotherapy 66, 10611069.
19.Johnson, AP et al. (2001) Dominance of EMRSA-15 and-16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS). Journal of Antimicrobial Chemotherapy 48, 143144.
20.Albrecht, N et al. (2011) Clonal replacement of epidemic methicillin-resistant Staphylococcus aureus strains in a German university hospital over a period of eleven years. PLoS ONE 6, e28189.
21.Melter, O et al. (2006) Emergence of EMRSA-15 clone in hospitals throughout the Czech Republic. Euro Surveillance 11, E060803E060806.
22.Wijaya, L, Hsu, L and Kurup, A (2006) Community-associated methicillin-resistant Staphylococcus aureus: overview and local situation. Annals of the Academy of Medicine 35, 479486.
23.Hsu, L-Y et al. (2006) Establishment of ST30 as the predominant clonal type among community-associated methicillin-resistant Staphylococcus aureus isolates in Singapore. Journal of Clinical Microbiology 44, 10901093.
24.Coombs, GW et al. (2006) Methicillin-resistant Staphylococcus aureus clones, Western Australia. Emerging Infectious Diseases 12, 241247.
25.Karden-Lilja, M et al. (2007) Panton-Valentine leukocidin genes and staphylococcal chromosomal cassette mec types amongst Finnish community-acquired methicillin-resistant Staphylococcus aureus strains, 1997–1999. European Journal of Clinical Microbiology and Infectious Diseases 26, 729733.
26.Shet, A et al. (2009) Colonization and subsequent skin and soft tissue infection due to methicillin-resistant Staphylococcus aureus in a cohort of otherwise healthy adults infected with HIV type 1. Journal of Infectious Diseases 200, 8893.
27.Drapeau, CM et al. (2007) Role of previous hospitalization in clinically-significant MRSA infection among HIV-infected inpatients: results of a case-control study. BMC Infectious Diseases 7, 36.
28.Villacian, J et al. (2004) Prevalence of and risk factors for nasal colonization with Staphylococcus aureus among human immunodeficiency virus-positive outpatients in Singapore. Infection Control and Hospital Epidemiology 25, 438440.
29.Kyaw, WM et al. (2012) Prevalence of and risk factors for MRSA colonization in HIV-positive outpatients in Singapore. AIDS Research and Therapy 9, 33.
30.Shadyab, A and Crum-Cianflone, N (2012) Methicillin-resistant Staphylococcus aureus (MRSA) infections among HIV-infected persons in the era of highly active antiretroviral therapy: a review of the literature. HIV Medicine 13, 319332.
31.Ferreira, DdC et al. (2014) Methicillin-resistant Staphylococcus aureus in HIV patients: risk factors associated with colonization and/or infection and methods for characterization of isolates – a systematic review. Clinics 69, 770776.
32.Edgeworth, JD et al. (2007) An outbreak in an intensive care unit of a strain of methicillin-resistant Staphylococcus aureus sequence type 239 associated with an increased rate of vascular access device-related bacteremia. Clinical Infectious Diseases 44, 493501.
33.Wang, S-H et al. (2012) Methicillin-resistant Staphylococcus aureus sequence type 239-III, Ohio, USA, 2007–2009. Emerging Infectious Diseases 18, 15571565.
34.Grundmeier, M et al. (2010) Staphylococcal strains vary greatly in their ability to induce an inflammatory response in endothelial cells. Journal of Infectious Diseases 201, 871880.
35.Hidron, AI et al. (2010) Methicillin-resistant Staphylococcus aureus in HIV-infected patients. Infection and Drug Resistance 3, 7386.
36.Popovich, KJ et al. (2014) Anatomic sites of colonization with community-associated methicillin-resistant Staphylococcus aureus. Infection Control and Hospital Epidemiology 35, 11921194.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed