Skip to main content
    • Aa
    • Aa

Optical genetic mapping defines regions of chromosomal variation in serovars of S. enterica subsp. enterica of concern for human and animal health

  • M. P. SAUNDERS (a1) (a2), G. WU (a1), M. ABUOUN (a1), Z. PAN (a1) (a2), M. ANJUM (a1) and M. J. WOODWARD (a1)...

Infections involving Salmonella enterica subsp. enterica serovars have serious animal and human health implications; causing gastroenteritis in humans and clinical symptoms, such as diarrhoea and abortion, in livestock. In this study an optical genetic mapping technique was used to screen 20 field isolate strains from four serovars implicated in disease outbreaks. The technique was able to distinguish between the serovars and the available sequenced strains and group them in agreement with similar data from microarrays and PFGE. The optical maps revealed variation in genome maps associated with antimicrobial resistance and prophage content in S. Typhimurium, and separated the S. Newport strains into two clear geographical lineages defined by the presence of prophage sequences. The technique was also able to detect novel insertions that may have had effects on the central metabolism of some strains. Overall optical mapping allowed a greater level of differentiation of genomic content and spatial information than more traditional typing methods.

Corresponding author
*Author for correspondence: Dr M. J. Woodward, Department of Food and Environmental Safety (FES), Veterinary Laboratories Agency (Weybridge), Addlestone, Surrey, KT15 3NB, UK. (Email:
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 40 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.