Skip to main content Accessibility help
×
Home

Persistence and clearance of different Salmonella serovars in buildings housing laying hens

  • J. J. CARRIQUE-MAS (a1), M. BRESLIN (a1), L. SNOW (a2), I. McLAREN (a1), A. R. SAYERS (a2) and R. H. DAVIES (a1)...

Summary

We investigated factors associated with persistence of different Salmonella serovars in buildings housing laying hens in Great Britain using survival analysis. A total of 264 incidents of Salmonella detection occurring between July 1998 and August 2007 in 152 houses were recorded. For incidents involving Salmonella Enteritidis (SE), both the rodent score of the house and the type of house were positively associated with persistence. For non-SE serovars, only the type of house was associated with persistence. Persistence of SE in the houses was longest (>15 months) in step-cage and cage-scraper houses when high levels of rodents were present, and lowest in non-cage and cage-belt houses. We estimated that 42% (95% CI 23·3–63·1) of SE incidents may be cleared during the lay period, and this was related to elimination of rodents from the houses. From January 2009, EU legislation will ban the sale of fresh eggs from SE-positive and S. Typhimurium-positive flocks over their remaining lifespan. If infection is eliminated from such flocks, they would cease to represent a public health risk.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Persistence and clearance of different Salmonella serovars in buildings housing laying hens
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Persistence and clearance of different Salmonella serovars in buildings housing laying hens
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Persistence and clearance of different Salmonella serovars in buildings housing laying hens
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr J. J. Carrique-Mas, Department of Food and Environmental Safety, Veterinary Laboratories Agency, New Haw, Addlestone, Surrey KT15 3NB, UK. (Email: j.carrique-mas@vla.defra.gsi.gov.uk)

References

Hide All
1. HPA. Salmonella in humans (excluding S. Typhi & S. Paratyphi): faecal & lower gastrointestinal isolates reported to the Health Protection Agency Centre for Infections England and Wales, 1981–2006. (http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb_C/1195733760280?p=1191942172078). Accessed February 2008.
2. EFSA. The Community Summary Report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2006. EFSA Journal 2007; 130.
3. Gillespie, IA, et al. Foodborne general outbreaks of Salmonella Enteritidis phage type 4 infection, England and Wales, 1992–2002: where are the risks? Epidemiology and Infection 2005; 133: 795801.
4. De Jong, B, Ekdahl, K. Human salmonellosis in travellers is highly correlated to the prevalence of salmonella in laying hen flocks. Eurosurveillance 2006; 11(7): E0607061.
5. Anon. Reducing Salmonella in European egg-laying hens: EU targets now set. Eurosurveillance 2006; 11(8): E0608103.
6. EFSA. Report of the Task Force on zoonoses data collection on the analysis of the baseline study on the prevalence of Salmonella in holdings of laying hen flocks of Gallus gallus. EFSA Journal 2007; 97.
7. Okamura, M, et al. Differences among six Salmonella serovars in abilities to colonize reproductive organs and to contaminate eggs in laying hens. Avian Diseases 2001; 45: 6169.
8. Gantois, I, et al. A comparative study on the pathogenesis of egg contamination by different serotypes of Salmonella. Avian Pathology 2008; 37: 399406.
9. Guan, J, Grenier, C, Brooks, B. In vitro study of Salmonella enteritidis and Salmonella typhimurium definitive type 104: survival in egg albumen and penetration through the vitelline membrane. Poultry Science 2006; 85: 16781681.
10. Schoeni, J, et al. Growth and penetration of Salmonella enteritidis, Salmonella heidelberg and Salmonella typhimurium in eggs. International Journal of Food Microbiology 24: 385396.
11. Wales, A, et al. A longitudinal study of environmental Salmonella contamination in caged and free-range layer flocks. Avian Pathology 2007; 36: 187197.
12. Carrique-Mas, JJ, Breslin, M, Snow, L. Observations related to the Salmonella EU layer baseline survey in the United Kingdom: follow-up of positive flocks and sensitivity issues. Epidemiology and Infection. Published online: 4 January 2008; doi:10.1017/S095026880700012X.
13. Henzler, DJ, Opitz, HM. Role of Rodents in the Epidemiology of Salmonella enterica serovar Enteritidis and other Salmonella Serovars in Poultry Farms, 1st edn. Ames: Iowa State University Press, 1999, pp. 331340.
14. Garber, L, et al. Salmonella enterica serotype enteritidis in table egg layer house environments and in mice in U.S. layer houses and associated risk factors. Avian Diseases 2003; 47: 134142.
15. Davies, RH, Wray, C. Mice as carriers of Salmonella enteritidis on persistently infected poultry units. Veterinary Record 1995; 137: 337341.
16. Davies, RH, Wray, C. Contribution of the lesser mealworm beetle (Alphitobius diaperinus) to carriage of Salmonella enteritidis in poultry. Veterinary Record 1995; 137: 407408.
17. Henzler, DJ, Opitz, HM. The role of mice in the epizootiology of Salmonella enteritidis infection on chicken layer farms. Avian Diseases 1992; 36: 625631.
18. Krabisch, P, Dorn, P. Epidemiologic significance of live vectors in the transmission of Salmonella infections in broiler flocks [in German]. Berliner und Münchener Tierärztliche Wochenschrift 1980; 93: 232235.
19. Wales, A, Breslin, M, Davies, R. Semi-quantitative assessment of the distribution of Salmonella in the environment of caged layer flocks. Journal of Applied Microbiology 2006; 101: 309318.
20. Brown, DJ, et al. Phage type conversion in Salmonella enterica serotype Enteritidis caused by the introduction of a resistance plasmid of incompatibility group X (IncX). Epidemiology and Infection 1999; 122: 1922.
21. Rankin, S, Platt, DJ. Phage conversion in Salmonella enterica serotype Enteritidis: implications for epidemiology. Epidemiology and Infection 1995; 114: 227236.
22. Popoff, MY. Antigenic Formulas of the Salmonella Serovars. Pasteur Institute, Paris, 2001.
23. Collett, D. Modelling Survival Data in Medical Research, 2nd edn. Chapman & Hall/CRC, 2003.
24. Dohoo, IR, Martyn, W, Stryn, H. Veterinary Epidemiologic Research. Charlottetown: Avc Inc., 2003.
25. Goldstein, H. Multilevel Statistical Models, 3rd edn. London: Arnold, 2003.
26. Carrique-Mas, J, et al. Comparison of environmental sampling methods for detecting Salmonella in commercial laying flocks in Great Britain. Letters in Applied Microbiology (in press).
27. Methner, U, et al. Occurence of Salmonellae in laying hens in different housing systems and conclusion for the control [in German]. Berliner und Münchener Tierärztliche Wochenschrift 2006; 119: 467473.
28. Mahe, A, et al. Bayesian estimation of flock-level sensitivity of detection of Salmonella spp., Enteritidis and Typhimurium according to the sampling procedure in French laying-hen houses. Preventive Veterinary Medicine 2008; 84: 1126.
29. Much, P, et al. Results of the EU-wide baseline study on the prevalence of Salmonella spp. in holdings of laying hens in Austria. Archiv fur Lebensmitterhygiene 2007; 58: 225229.
30. Mollenhorst, H, et al. Risk factors for Salmonella enteritidis infections in laying hens. Poultry Science 2005; 84: 13081313.
31. Snow, LC, et al. Survey of Salmonella prevalence in Laying flocks in the United Kingdom. Veterinary Record 2007; 161: 471476.
32. Davies, RH. Pathogen populations on poultry farms. In: Mead, GC ed. Food Safety Control in the Poultry Industry. Cambridge: CRC Press, 2005, pp. 101152.
33. Taylor, J. Bacterial rodenticides and infection with Salmonella enteritidis. Lancet 1956; 270: 630633.
34. Welch, H, Ostrolenk, M, Bartram, MT. Role of rats in the spread of food poisoning bacteria of the Salmonella group. American Journal of Public Health Nations Health 1941; 31: 332340.
35. Wales, A, Breslin, M, Davies, R. Assessment of cleaning and disinfection in Salmonella-contaminated poultry layer houses using qualitative and semi-quantitative culture techniques. Veterinary Microbiology 2006; 116: 283293.
36. Davies, R, Breslin, M. Environmental contamination and detection of Salmonella enterica serovar Enteritidis in laying flocks. Veterinary Record 2001; 149: 699704.
37. Kempelmacher, EH, et al. Artificial Salmonella infections in rats. Zentralblatt fur Veterinarmedizin [B] 1969; 16: 173182.
38. Poppe, C, et al. Virulence of Salmonella enteritidis phagetypes 4, 8 and 13 and other Salmonella spp. for day-old chicks, hens and mice. Canadian Journal of Veterinary Research 1993; 57: 281287.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed