Skip to main content Accessibility help
×
×
Home

Predominance of influenza B/Yamagata lineage viruses in Bulgaria during the 2017/2018 season

  • N. S. Korsun (a1), S. G. Angelova (a1), I. T. Trifonova (a1), I. L. Georgieva (a1), I. S. Tzotcheva (a2), S. D. Mileva (a2), S. E. Voleva (a1), A. M. Kurchatova (a3) and P. I. Perenovska (a2)...
Abstract

In this study, we investigated the antigenic and genetic characteristics of influenza viruses circulating in Bulgaria during the 2017/2018 season. The detection and typing/subtyping of influenza viruses were performed using real-time RT-PCR. Results of antigenic characterisation, phylogenetic and amino acid sequence analyses of representative influenza strains are presented. The season was characterised by the predominance of B/Yamagata viruses, accounting for 77% of detected influenza viruses, followed by A(H1N1)pdm09 (17%), B/Victoria (3.7%) and A(H3N2) (2.4%). The sequenced B/Yamagata, B/Victoria, A(H1N1)pdm09 and A(H3N2) viruses belonged to the genetic groups 3, 1A, 6B.1 and 3C.2a1, respectively. Amino acid analysis of B/Yamagata isolates revealed the presence of three changes in haemagglutinin (HA), eight changes in neuraminidase (NA) and a number of substitutions in internal proteins compared with the B/Phucket/3073/2013 vaccine virus. Despite the amino acid changes, B/Yamagata viruses remained antigenically related to the vaccine strain. B/Victoria isolates fell into a group of viruses with double deletion (Δ162–163) in HA1. Substitutions in HA and NA sequences of B/Victoria, A(H1N1)pdm09 and A(H3N2) viruses were also identified compared with the vaccine strains, including in antigenic sites. The results of this study confirm the genetic variability of circulating influenza viruses and the need for continual antigenic and molecular surveillance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Predominance of influenza B/Yamagata lineage viruses in Bulgaria during the 2017/2018 season
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Predominance of influenza B/Yamagata lineage viruses in Bulgaria during the 2017/2018 season
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Predominance of influenza B/Yamagata lineage viruses in Bulgaria during the 2017/2018 season
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Author for correspondence: N. S. Korsun, E-mail: neli_korsun@abv.bg
References
Hide All
1.Cassini, A et al. (2018) Impact of infectious diseases on population health using incidence based disability-adjusted life years (DALYs): results from the burden of communicable diseases in Europe study, European Union and European Economic countries, 2009 to 2013. Eurosurveillance 23, pii = 17-00454.
2.World Health Organization. Influenza (Seasonal). World Health Organization. Available at http://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal) (Accessed 31 January 2018).
3.Rota, PA et al. (1990) Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology 175, 5968.
4.Kuo, SM et al. (2016) Circulating pattern and genomic characteristics of influenza B viruses in Taiwan from 2003 to 2014. Journal of the Formosan Medical Association 115, 510522.
5.Sharabi, S et al. (2016) Epidemiological and virological characterization of influenza B virus infections. PLoS ONE 11, e0161195.
6.Caini, S et al. (2015) Epidemiological and virological characteristics of influenza B: results of the Global influenza B study. Influenza and Other Respiratory Viruses suppl. 1, 312.
7.Gutierrez-Pizarraya, A et al. (2012) Unexpected severity of cases of influenza B infection in patients that required hospitalization during the first postpandemic wave. Journal of Infection 65, 423430.
8.Glezen, PW et al. (2013) The burden of influenza B: a structured literature review. American Journal of Public Health 103, e43e51.
9.Caton, AJ et al. (1982) The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31, 417427.
10.Wiley, DC, Wilson, IA and Skehel, JJ (1981) Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289, 373378.
11.Wang, Q et al. (2008) Crystal structure of unliganded influenza B virus hemagglutinin. Journal of Virology 82, 30113020.
12.Koel, BF et al. (2013) Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science 342, 976979.
13.Skehel, JJ et al. (1984) A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proceedings of the National Academy of Sciences of the USA 81, 17791783.
14.European Centre for Disease Prevention and Control. Seasonal influenza – Annual Epidemiological Report for 2017–2018. Available at https://ecdc.europa.eu/en/publications-data/seasonal-influenza-annual-epidemiological-report-2017-18-season.
15.World Health Organization (2011) Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza. World Health Organization. Available at http://whqlibdoc.who.int/publications/2011/9789241548090_eng.pdf.
16.Shu, B et al. (2011) Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A(H1N1) pandemic influenza virus. Journal of Clinical Microbiology 49, 26142619.
17.Matrosovich, M et al. (2003) Over expression of the a-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. Journal of Virology 77, 84188425.
18.Shu, Y and McCauley, J (2017) GISAID: Global initiative on sharing all influenza data – from vision to reality. Eurosurveillance 22, pii: 30494.
19.Tamura, K et al. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.
20.CDC (2017) Update: influenza activity in the United States during the 2016–17 season and composition of the 2017–18 influenza vaccine. Morbidity and Mortality Weekly Report 66, 668676.
21.World Health Organization. R ecommended Composition of Influenza Virus Vaccines for Use in the 2018–2019 Northern Hemisphere Influenza Season. World Health Organization. Available at http://www.who.int/influenza/vaccines/virus/recommendations/2018_19_north/en/.
22.Tewawong, N et al. (2015) Molecular epidemiology and phylogenetic analyses of influenza B virus in Thailand during 2010 to 2014. PLoS ONE 10, e0116302.
23.de la Rosa-Zamboni, D et al. (2012) Molecular characterization of the predominant influenza A(H1N1)pdm09 virus in Mexico, December 2011 – February 2012. PLoS ONE 7, e50116.
24.Fang, Q et al. (2014) Molecular epidemiology and evolution of A(H1N1)pdm09 and H3N2 virus during winter 2012–2013 in Beijing, China. Infection, Genetics and Evolution 26, 228240.
25.World Health Organization. S ummary of Neuraminidase Amino Acid Substitutions Associated with Reduced Inhibition by Neuraminidase Inhibitors (NAI). World Health Organization. Available at http://www.who.int/influenza/gisrs_laboratory/antiviral_susceptibility/nai_overview/en/ (Accessed 26 April 2018).
26.Adlhoch, C et al. (2018) Dominant influenza A(H3N2) and B/Yamagata virus circulation in EU/EEA, 2016/17 and 2017/18 seasons, respectively. Eurosurveillance 23, pii = 18-00146.
27.Korsun, N, Angelova, S and Teodosieva, A (2016) Virological surveillance of influenza in four recent post-pandemic seasons (2010/11 to 2013/14) in Bulgaria. Central European Journal of Public Health 24, 180187.
28.Horthongkham, N et al. (2016) Epidemiological, clinical and virological characteristics of influenza B virus from patients at the hospital tertiary care units in Bangkok during 2011–2014. PLoS ONE 1, e0158244.
29.Yang, J et al. (2018) Variation in influenza B virus epidemiology by lineage, China. Emerging Infectious Diseases Journal 24, 15361540.
30.Chen, R and Holmes, EC (2008) The evolutionary dynamics of human influenza B virus. Journal of Molecular Evolution 66, 655663.
31.Nobusawa, E and Sato, K (2006) Comparison of the mutation rates of human influenza A and B viruses. Journal of Virology 80, 36753678.
32.Tewawong, N et al. (2017) Evidence for influenza B virus lineage shifts and reassortants circulating in Thailand in 2014–2016. Infection Genetics and Evolution 47, 3540.
33.Oong, XY et al. (2017) Whole-genome phylogenetic analysis of influenza B/Phuket/3073/2013-like viruses and unique reassortants detected in Malaysia between 2012 and 2014. PLoS ONE 12, e0170610.
34.Monamele, CG et al. (2018) Genetic characterization of influenza B virus in Cameroon and high frequency of reassortant strains. Journal of Medical Virology 90, 18481855.
35.Yang, LR et al. (2012) Phylogenetic and evolutionary history of influenza B viruses, which caused a large epidemic in 2011–2012, Taiwan. PLoS ONE 7, e47179.
36.Tramuto, F et al. (2016) The molecular epidemiology and evolutionary dynamics of influenza B virus in two Italian regions during 2010–2015: the experience of Sicily and Liguria. International Journal of Molecular Sciences 17, 115.
37.Allen, JD and Ross, TM (2018) H3N2 influenza viruses in humans: vira mechanisms, evolution, and evaluation. Human Vaccines & Immunotherapeutics 14, 18401847.
38.Bedford, T et al. (2014) Integrating influenza antigenic dynamics with molecular evolution. Elife 3, e01914.
39.Pariani, E et al. (2015) Ten years (2004–2014) of influenza surveillance in Northern Italy. Human Vaccines & Immunotherapeutics 11, 198205.
40.Seleka, M et al. (2017) Epidemiology of influenza B/Yamagata and B/Victoria lineages in South Africa, 2005–2014. PLoS ONE 12, e0177655.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed