Skip to main content Accessibility help
×
×
Home

Prospective use of whole genome sequencing (WGS) detected a multi-country outbreak of Salmonella Enteritidis

  • T. INNS (a1) (a2) (a3), P. M. ASHTON (a4), S. HERRERA-LEON (a5), J. LIGHTHILL (a6), S. FOULKES (a1), T. JOMBART (a7), Y. REHMAN (a1), A. FOX (a8), T. DALLMAN (a3) (a4), E. DE PINNA (a4), L. BROWNING (a9), J. E. COIA (a10), O. EDEGHERE (a1) and R. VIVANCOS (a1) (a2) (a3)...
Summary

Since April 2015, whole genome sequencing (WGS) has been the routine test for Salmonella identification, surveillance and outbreak investigation at the national reference laboratory in England and Wales. In May 2015, an outbreak of Salmonella Enteritidis cases was detected using WGS data and investigated. UK cases were interviewed to obtain a food history and links between suppliers were mapped to produce a food chain network for chicken eggs. The association between the food chain network and the phylogeny was explored using a network comparison approach. Food and environmental samples were taken from premises linked to cases and tested for Salmonella. Within the outbreak single nucleotide polymorphism defined cluster, 136 cases were identified in the UK and 18 in Spain. One isolate from a food containing chicken eggs was within the outbreak cluster. There was a significant association between the chicken egg food chain of UK cases and phylogeny of outbreak isolates. This is the first published Salmonella outbreak to be prospectively detected using WGS. This outbreak in the UK was linked with contemporaneous cases in Spain by WGS. We conclude that UK and Spanish cases were exposed to a common source of Salmonella-contaminated chicken eggs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Prospective use of whole genome sequencing (WGS) detected a multi-country outbreak of Salmonella Enteritidis
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Prospective use of whole genome sequencing (WGS) detected a multi-country outbreak of Salmonella Enteritidis
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Prospective use of whole genome sequencing (WGS) detected a multi-country outbreak of Salmonella Enteritidis
      Available formats
      ×
Copyright
Corresponding author
*Author for correspondence: Mr T. Inns, Public Health England, Rail House, Lord Nelson Street, Liverpool L1 1JF, UK. (Email: thomas.inns@phe.gov.uk)
References
Hide All
1. Lane, CR, et al. Salmonella enterica serovar Enteritidis, England and Wales, 1945–2011. Emerging Infectious Diseases 2014; 20: 1097–104.
2. O'Brien, SJ. The ‘decline and fall’ of nontyphoidal Salmonella in the United Kingdom. Clinical Infectious Diseases 2013; 56: 705710.
3. Hugas, M, Beloeil, P. Controlling Salmonella along the food chain in the European Union – progress over the last ten years. Eurosurveillance 2014; 19: 20804.
4. EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA Journal 2015; 13: 3991.
5. Inns, T, et al. A multi-country Salmonella Enteritidis phage type 14b outbreak associated with eggs from a German producer: ‘near real-time’ application of whole genome sequencing and food chain investigations, United Kingdom, May to September 2014. Eurosurveillance 2015; 20: 21098.
6. Janmohamed, K, et al. National outbreak of Salmonella Enteritidis phage type 14b in England, September to December 2009: case-control study. Eurosurveillance 2011; 16.
7. Harker, KS, et al. National outbreaks of Salmonella infection in the UK, 2000–2011. Epidemiology and Infection 2014; 142: 601607.
8. Ashton, PM, et al. Identification and typing of Salmonella for public health surveillance using whole genome sequencing. PeerJ 2015; 4: e1752.
9. Ashton, PM, et al. Revolutionising public health reference microbiology using whole genome sequencing: Salmonella as an exemplar. bioRxiv preprint 2015. doi:http://dx.doi.org/10.1101/033225.
10. Li, H, Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26: 589595.
11. McKenna, A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 2010; 20: 12971303.
12. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 13121313.
13. Ward, LR, De Sa, JDH, Rowe, B. A phage-typing scheme for Salmonella Enteritidis. Epidemiology and Infection 1987; 99: 291294.
14. yED Graph Editor. Version 3.14 (http: //www.yworks.com/en/products/yfiles/).
15. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
16. Csardi, G, Nepusz, T. The igraph software package for complex network research. InterJournal Complex Systems 2006, 1695.
17. Jombart, T, Dray, S. adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics 2010; 26: 19071909.
18. Dray, S, Dufour, AB. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 2007; 22: 120.
19. Public Health England. Detection of Salmonella species. Microbiology Services. Food, Water & Environmental Microbiology Standard Method FNES16 (F13); version 2, 2014 (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/330682/National_SOP_FNES16_F13_Detection_of_Salmonella_Species.pdf). Accessed 7 April 2016.
20. U.S. Food and Drug Administration. Whole Genome Sequencing (WGS) Program (http://www.fda.gov/Food/FoodScienceResearch/WholeGenomeSequencingProgramWGS/default.htm). Accessed 25 February 2016.
21. den Bakker, HC, et al. Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar Enteritidis. Emerging Infectious Diseases 2014; 20: 13061314.
22. Leekitcharoenphon, P, et al. Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS ONE 2014; 9: e87991.
23. Hoffmann, M, et al. Tracing origins of the Salmonella Bareilly strain causing a food-borne outbreak in the United States. Journal of Infectious Diseases 2016; 213: 502508.
24. Zheng, J, et al. Enhanced subtyping scheme for Salmonella Enteritidis. Emerging Infectious Diseases 2007; 13: 19321935.
25. Boxrud, D, et al. Comparison of multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and phage typing for subtype analysis of Salmonella enterica serotype Enteritidis. Journal of Clinical Microbiology 2007; 45: 536543.
26. Yousaf, M, Chaudhry, A. History, changing scenarios and future strategies to induce moulting in laying hens. World's Poultry Science Journal 2008; 64: 6575.
27. Carrique-Mas, JJ, et al. Persistence and clearance of different Salmonella serovars in buildings housing laying hens. Epidemiology and Infection 2009; 137: 837846.
28. Arnold, ME, Carrique-Mas, JJ, Davies, RH. Sensitivity of environmental sampling methods for detecting Salmonella Enteritidis in commercial laying flocks relative to the within-flock prevalence. Epidemiology and Infection 2010; 138; 330339.
29. Davies, RH, Wales, AD. Developments in Salmonella control in eggs. In: Sofos, J, ed. Advances in Microbial Food Safety. Oxford, UK: Woodhead Publishing, 2015, pp. 281311.
30. Dunn, JR. Whole-genome sequencing: opportunities and challenges for public health, food-borne outbreak investigations, and the global food supply. Journal of Infectious Diseases 2016; 213: 499501.
31. Dallman, T, Inns, T, Jombart, T, et al. Phylogenetic structure of European Salmonella Enteritidis outbreak correlates with national and international egg distribution network. Microbial Genomics. Published online 26 May 2016. doi:10.1099/mgen.0.000070.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Inns supplementary material
Inns supplementary material 1

 Unknown (1.1 MB)
1.1 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed