Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-14T20:03:58.093Z Has data issue: false hasContentIssue false

Relation between the Nature of the Carbohydrate in the Diet and Refection in Rats

Published online by Cambridge University Press:  15 May 2009

Stanisłw Kazimierz Kon
Affiliation:
From the Biochemical Laboratory, Cambridge.
Elsie Watchorn
Affiliation:
From the Biochemical Laboratory, Cambridge.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The phenomenon of refection has been confirmed.

2. The incidence of spontaneous growth of rats on a vitamin B-free diet is very much greater when potato starch instead of rice starch is used in the diet.

3. Raw arrowroot starch gave similar but not such good results.

4. The protective action is largely destroyed by gentle cooking of the starch, and less so by extraction with alcohol.

We wish to thank Prof. Sir F. G. Hopkins for his encouragement and interest during this work.

One of us (S. K. K.) is indebted to the International Health Board of the Rockefeller Foundation for a fellowship, and the other (E. W.) is indebted to the Medical Research Council for a personal grant.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1928

References

REFERENCES

Baccharach, A. L. & Hartwell, G. A. (1927). The Analyst, 52, 145.CrossRefGoogle Scholar
Boas, M. A. (1927). Biochem. J. 21, 712.CrossRefGoogle Scholar
Chick, H. and Roscoe, M. H. (1927). Biochem. J. 21, 698.CrossRefGoogle Scholar
Drummond, J. C. (1917). Biochem. J. 11, 255.CrossRefGoogle Scholar
Eijkman, C. (1897). Arch. f. path. Anat. u. Phys. 148, 523.CrossRefGoogle Scholar
Fridericia, L. S. (1926). Skand. Arch. f. Phys. 2. Abstracts of communications to 12th Internat. Physiol. Congress, p. 55.Google Scholar
Fridericia, L. S., Freudenthal, S., Gudjonnsson, S., Johansen, G. and Schoubye, N. (1927). J. Hygiene, 27, 70.Google Scholar
Funk, C. and Dubin, H. E. (1922). Proc. Soc. Exp. Biol. and Med. 19, 15.CrossRefGoogle Scholar
Funk, C. and Paton, J. B. (1922). J. Metab. Res. 1, 737.Google Scholar
Goldberger, J. and Lillie, R. D. (1926). U.S.A. Public Health Reports, 41, 1025.CrossRefGoogle Scholar
Goldberger, J., Wheeler, G. A., Lillie, R. D. and Rogers, L. M. (1926). U.S.A. Public Health Reports, 41, 297.Google Scholar
Hartwell, G. A. (1925). Biochem. J. 19, 1075.CrossRefGoogle Scholar
Hartwell, G. A. (1926). Biochem. J. 20, 1273.CrossRefGoogle Scholar
Heller, V. G., Mcelroy, C. H. and Garlock, B. (1925). J. Biol. Chem. 65, 255.CrossRefGoogle Scholar
König, J. (1920). Chemie der Menschlichen Nahrungs- und Genussmittel, 2, 381, 5th ed.Google Scholar
Mitchell, H. H. (1919). J. Biol. Chem. 40, 399.Google Scholar
Reader, L. and Lecoq, R. (1927). J. Pharm. et Chim. 5, 147.Google Scholar
Roscoe, V. and Drummond, J. C. (1926). Biochem. J. 20, 1256.Google Scholar
Roscoe, M. H. (1927). J. Hygiene, 27, 103.CrossRefGoogle Scholar
Sherman, H. C. and Gloy, O. H. M. (1927). J. Biol. Chem. 74, 117.CrossRefGoogle Scholar