Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-30T05:18:11.767Z Has data issue: false hasContentIssue false

A review of some recent work on papillary variation in bacteria and bacterial cytology

Published online by Cambridge University Press:  15 May 2009

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some recent advances in the subject of bacterial variation and cytology are:

(1) The white race of Bact. coli-mutabile contains lactase, inhibited by some cause unknown (Deere et al. 1939). Deere (1939) suggests that the cells of the white race may be impermeable to lactose while the lactase system is intracellular.

(2) Variation from non-lactose-fermenter to lactose fermenter in Bact. coli-mutabile takes place on lactose only (Stewart, 1942).

(3) The nucleus of Myxococcus xanthus consists of definite chromatin masses. A process resembling karyokinesis and autogamic conjugation precedes spore formation (Beebe, 1941).

(4) The nucleus of vegetative bacterial cells consists of a pair of dumbbell-shaped chromatinic bodies, which split longitudinally before cell division. The dumbbell bodies are comparable to the chromosomes of animals and plants (Robinow, 1942).

(5) Careful plating provides unquestionably pure lines in the coliform group (Stewart, 1942).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1943

References

REFERENCES

Beebe, J. M. (1941). Morphology and cytology of Myxococcus xanthus n.sp. J. Bact. 42, 193223.Google Scholar
Bernhardt, G. (1915). Ueber Variabilität pathogener Bakterien. Z. Hyg. InfektKr. 79, 179.Google Scholar
Deere, C. J. (1939). On the ‘activation’ of the lactase of Escherichia coli-mutabile. J. Bact. 37, 473–83.Google Scholar
Deere, C. J., Dulaney, D. & Michelson, I. D. (1936). The utilization of lactose by Escherichia coli-mutabile. J. Bact. 31, 625–33.Google Scholar
Deere, C. J., Dulaney, D. & Michelson, I. D. (1939). The lactase activity of Escherichia coli-mutabile. J. Bact. 37, 355–63.Google Scholar
Dobell, C. (1908). Notes on some parasitic protists. Quart. J. Micr. Sci. 52, 121–38.Google Scholar
Dobell, C. (1909). On the so-called ‘sexual’ method of spore formation in the disporic bacteria. Quart. J. Micr. Sci. 53, 579–96.Google Scholar
Dobell, C. (1911). Contributions to the cytology of bacteria. Quart. J. Micr. Sci. 55, 395506.Google Scholar
Dobell, C. (1913). Some recent work on mutation in micro-organisms. II. Mutations in bacteria. J. Genet. 2, 325–50.CrossRefGoogle Scholar
Lewis, I. M. (1934). Bacterial variation with special reference to behavior of-mutable strains of bacteria in synthetic media. J. Bact. 28, 619–38.Google Scholar
Massini, R. (1907). Ueber ein in biologischer Beziehung interessanten Koli-stamm. (B. coli-mutabile). Arch. Hyg. Berl. 61, 250.Google Scholar
Neisser, J. M. (1906). Ein Fall von Mutation bei Bakterien. Zbl. Bakt. Ref. 38, Beihft. 98.Google Scholar
Robinow, C. F. (1942). A study of the nuclear apparatus of bacteria. Proc. Roy. Soc. B, 130, 299324.Google Scholar
Schaudinn, F. (1902). Beiträge z. Kenntniss der Bakterien und verwandter Organismen. I. Bac. bütschlii n.sp. Arch. Protistenk. 1, 306.Google Scholar
Schaudinn, F. (1903). Beiträge z. Kenntniss der Bakterien und verwandter Organismen. II. Bac. sporonema. Arch. Protistenk. 2, 421.Google Scholar
Stewart, F. H. (1926). Mendelian variation in the paracolon mutabile colon group. J. Hyg., Camb., 25, 237–55.CrossRefGoogle ScholarPubMed
Stewart, F. H. (1927). Segregation and Autogamy in Bacteria. Adlard and Son.Google Scholar
Stewart, F. H. (1928). The life cycle of bacteria. Alternate asexual and autogamic phases. J. Hyg., Camb., 27, 379–95.Google Scholar
Stewart, F. H. (1942). Papillary variation in coliform bacteria. J. Hyg., Camb., 41, 497508.Google Scholar