Skip to main content Accessibility help
×
×
Home

The seroprevalence of cytomegalovirus infection in Belgium anno 2002 and 2006: a comparative analysis with hepatitis A virus seroprevalence

  • G. S. A. Smit (a1) (a2) (a3), S. Abrams (a4) (a5), P. Dorny (a1) (a2), N. Speybroeck (a3), B. Devleesschauwer (a6) (a7), V. Hutse (a8), H. Jansens (a9), H. Theeten (a10) (a11), P. Beutels (a10) (a12) and N. Hens (a4) (a10) (a11)...
Abstract

Cytomegalovirus (CMV) infection is endemic worldwide but its seroprevalence varies widely. The goal of this study was to estimate the age-specific seroprevalence of CMV infection in Belgium based on two cross-sectional serological datasets from 2002 and 2006. The seroprevalence was estimated relying on diagnostic test results based on cut-off values pre-specified by the manufacturers of the tests as well as relying on mixture models applied to continuous pathogen-specific immunoglobulin G antibody titre concentrations. The age-specific seroprevalence of hepatitis A virus (HAV), based on three Belgian cross-sectional serological datasets from 1993, 2002 and 2006, was used as a comparator since individuals acquire lifelong immunity upon recovery, implying an increasing seroprevalence with age. The age group weighted overall CMV seroprevalence derived from the mixture model was 32% (95% confidence interval (CI) 31–34%) in 2002 and 31% (95% CI 30–32%) in 2006. We demonstrated that CMV epidemiology differs from the immunizing infection HAV. This was the first large-scale study of CMV and HAV serial datasets in Belgium, estimating seroprevalence specified by age and birth cohort.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The seroprevalence of cytomegalovirus infection in Belgium anno 2002 and 2006: a comparative analysis with hepatitis A virus seroprevalence
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The seroprevalence of cytomegalovirus infection in Belgium anno 2002 and 2006: a comparative analysis with hepatitis A virus seroprevalence
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The seroprevalence of cytomegalovirus infection in Belgium anno 2002 and 2006: a comparative analysis with hepatitis A virus seroprevalence
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Author for correspondence: G. S. A. Smit, E-mail: suzanne.smit@ugent.be
References
Hide All
1.Remington, JS et al. (2011) Infectious Diseases of the Fetus and Newborn Infant, 7th Edn. Philadelphia: Elsevier Saunders.
2.Zuhair, M et al. (2019) Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Reviews in Medical Virology, e2034. doi:10.1002/rmv.2034.
3.Griffiths, PD, Emery, VC and Milne, R (2009) Cytomegalovirus. In: Richman, DD, Whitley, RJ, Hayden, FG (eds), Clinical Virology, 3rd Edn. Washington, DC: ASM Press, pp. 475506.
4.Del Pizzo, J (2011) Focus on diagnosis: congenital infections (TORCH). Pediatrics in Review 32, 537542.
5.Rawlinson, WD et al. (2017) Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis and therapy. The Lancet Infectious Diseases 17, e177e188.
6.Jacobsen, KH and Koopman, JS (2005) The effects of socioeconomic development on worldwide hepatitis A virus seroprevalence patterns. International Journal of Epidemiology 34, 600609.
7.Kurkela, S et al. (2012) Comparative hepatitis A seroepidemiology in 10 European countries. Epidemiology and Infection 140, 21722181.
8.Vranckx, R, Jacques, P and Moens, G (1999) Prevalence of hepatitis A antibodies in a large sample of Belgian health care workers. Infection 27, 256258.
9.World Health Organization (2012) WHO position paper on hepatitis A vaccines – June 2012. Weekly Epidemiological Record 87, 261276.
10.Andraud, M et al. (2012) Living on three time scales: the dynamics of plasma cell and antibody populations illustrated for hepatitis A virus. PLoS Computational Biology 8, e1002418.
11.Theeten, H et al. (2015) Long-term antibody persistence after vaccination with a 2-dose Harvix™ (inactivated hepatitis A vaccine): 20 years of observed data, and long-term model-based predictions. Vaccine 33, 57235727.
12.Goeyvaerts, N et al. (2011) Model structure analysis to estimate basic immunological processes and maternal risk for parvovirus B19. Biostatistics (Oxford, England) 12, 283302.
13.Hens, N et al. (2010) Seventy-five years of estimating the force of infection from current status data. Epidemiology and Infection 138, 802812.
14.Nothdurft, HD (2008) Hepatitis A vaccines. Expert Review of Vaccines 7, 535545.
15.Van Boven, M et al. (2017) Infectious reactivation of cytomegalovirus explaining age- and sex-specific patterns of seroprevalence. PLoS Computational Biology 13, e1005719.
16.Yamamoto, AY et al. (2010) Human cytomegalovirus reinfection is associated with intrauterine transmission in a highly cytomegalovirus-immune maternal population. American Journal of Obstetrics and Gynecology 202, 297 e1297 e8.
17.SPMA, Public Health and Surveillance (2016) Scientific Institute of Public Health, Brussels, Belgium. Available at https://spma.wiv-isp.be/ (Accessed 27 August 2016).
18.Beutels, M et al. (1997) Prevalence of hepatitis A, B and C in the Flemish population. European Journal of Epidemiology 13, 275280.
19.Smit, GSA et al. (2017) Pubic health impact of congenital toxoplasmosis and cytomegalovirus infection in Belgium, 2013: a systematic review and data synthesis. Clinical Infectious Diseases 65, 661668.
20.Vyse, AJ et al. (2004) Seroprevalence of antibody to varicella zoster virus in England and Wales in children and young adults. Epidemiology and Infection 132, 11291134.
21.Nardone, A et al. (2008) Comparison of rubella sero-epidemiology in seventeen countries – progress towards international disease control targets. Bulletin of the World Health Organization 86, 118125.
22.Theeten, H et al. (2011) Are we hitting immunity targets? The 2006 age-specific seroprevalence of measles, mumps, rubella, diphtheria and tetanus in Belgium. Epidemiology and Infection 139, 494504.
23.Hens, N et al. (2012) Modeling Infectious Disease Parameters Based on Serological and Social Contact Data, Statistics for Biology and Health 63. New York: © Springer Science+Business Media.
24.Wood, SN (2003) Thin plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65, 95114.
25.Gay, N (1996) Analysis of serological surveys using mixture models: application to a survey of parvovirus B19. Statistics in Medicine 15, 15671573.
26.R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at http://www.R-project.org/ (Accessed 2 December 2017).
27.Cox, C (2005) Delta Method: Encyclopedia of Biostatistics. Chichester, UK: John Wiley & Sons, Ltd.
28.Vyse, AJ et al. (2006) Interpreting serological surveys using mixture models: the seroepidemiology of measles, mumps and rubella in England and Wales at the beginning of the 21st century. Epidemiology and Infection 134, 13031312.
29.Bollaerts, K et al. (2012) Estimating the population prevalence and force of infection directly from antibody titres. Statistical Modelling 12, 441462.
30.Hardelid, P et al. (2008) Analysis of rubella antibody distribution from newborn dried blood spots using finite mixture models. Epidemiology and Infection 136, 16981706.
31.Cannon, MJ, Schmid, DS and Hyde, TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Reviews in Medical Virology 20, 202213.
32.Bate, SL, Dollard, SC and Cannon, MJ (2010) Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988–2004. Clinical Infectious Diseases 50, 14391447.
33.Beutels, P et al. (2008) Evaluation of universal and targeted hepatitis A vaccination programs in Belgium. Health Technology Assessment (HTA). Brussel, Belgium: Federal Knowledge Centre for Health Care (KCE); KCE reports 98A (D/2008/10. 273/88). Available at https://kce.fgov.be/sites/default/files/atoms/files/d20081027388.pdf (Accessed 1 August 2018).
34.Barbi, M et al. (2006) Multicity Italian study of congenital cytomegalovirus infection. The Pediatric Infectious Disease Journal 25, 156159.
35.de Ory, F et al. (2004) Is there a change in cytomegalovirus seroepidemiology in Spain? European Journal of Epidemiology 19, 8589.
36.Wentworth, BB and Alexander, ER (1971) Seroepidemiology of infectious due to members of the herpesvirus group. American Journal of Epidemiology 94, 496507.
37.Robesyn, E et al. (2009) An outbreak of hepatitis A associated with the consumption of raw beef. Journal of Clinical Virology 44, 207210.
38.Rouderfer, V, Becker, N and Hethcote, H (1994) Waning immunity and its effects on vaccination schedules. Mathematical Biosciences 124, 5982.
39.Van Boven, M et al. (2000) Waning immunity and sub-clinical infection in an epidemic model: implications for pertussis in The Netherlands. Mathematical Biosciences 164, 161182.
40.Van Boven, M et al. (2001) A model based evaluation of the 1996-7 pertussis epidemic in The Netherlands. Epidemiology and Infection 127, 7385.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Smit et al. supplementary material
Smit et al. supplementary material 1

 Word (994 KB)
994 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed