Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T20:28:13.980Z Has data issue: false hasContentIssue false

Serotypes of sex pili

Published online by Cambridge University Press:  15 May 2009

A. M. Lawn
Affiliation:
Departments of Electron Microscopy and Microbiology, Lister Institute of Preventive Medicine, Chelsea Bridge Road, London, S.W.1
Elinor Meynell
Affiliation:
Departments of Electron Microscopy and Microbiology, Lister Institute of Preventive Medicine, Chelsea Bridge Road, London, S.W.1
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are situations in which direct observation of the attachment of antibody molecules may be the simplest method of detecting antigen-antibody reactions. Applied to the study of the sex pili determined by a number of transmissible bacterial plasmids, the method has distinguished four serotypes in the F-like class and two in the I-like class. Antibody was usually attached haphazardly to the pili; however, in a few cases a regular periodicity could be observed. When few antibody molecules were attached, they could frequently be individually resolved and in certain antibody-pilus combinations large antibody molecules, tentatively identified as IgM, could be seen to predominate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

References

REFERENCES

Brinton, C. C. (1965). The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram-negative bacteria. Transactions of the New York Academy of Sciences 27, 1003.CrossRefGoogle Scholar
Cavalli, L. L., Lederberg, J. & Ledebrerg, E. M. (1953). An infective factor controlling sex compatibility in Bacterium coli. Journal of General Microbiology 8, 89.Google ScholarPubMed
Duguid, J. P. & Wilkinson, J. F. (1961). Environmentally induced changes in bacterial morphology. Symposium of the Society for General Microbiology 11, 69.Google Scholar
Egawa, R. & Hirota, Y. (1962). Inhibition of fertility by multiple drug-resistance factor in Escherichia coli K 12. Japanese Journal of Genetics 37, 66.Google Scholar
Feinstein, A. & Munn, E. A. (1966). An electron microscopic study of the interaction of macroglobulin (IgM) antibodies with bacterial flagella and of the binding of complement (D). Journal of Physiology 186, 64P.Google Scholar
Fredericq, P. (1963). Colicines et autres bactériocines. Ergebnisse der Mikrobiologie Immunitätsforschung und experimentellen Therapie 37, 114.CrossRefGoogle Scholar
Green, N. M. (1969). Electron microscopy of the immunoglobulins. Advances in Immunology 11, 1.CrossRefGoogle ScholarPubMed
Hayes, W. (1953). Observations on a transmissible agent determining sexual differentiation in Bact. coli. Journal of General Microbiology 8, 72.Google Scholar
Ishibashi, M. (1967). F pilus as f+ antigen. Journal of Bacteriology 93, 379.CrossRefGoogle ScholarPubMed
Kahn, P. & Helinski, D. R. (1964). Relationship between colicinogenic factors El and V and an F factor in Escherichia coli. Journal of Bacteriology 88, 1573.CrossRefGoogle Scholar
Kétyi, I. & Ørskov, I. (1969). Studies on the antigenic structure of sex fimbriae carried by a strain of Shigella flexneri 4b. Acta pathologica et microbiologica scandinavica 77, 299.CrossRefGoogle ScholarPubMed
Lawn, A. M. (1966). Morphological features of the pili associated with R+F and RF+ bacteria. Journal of General Microbiology 45, 377.CrossRefGoogle Scholar
Lawn, A. M. (1967). Simple immunological labelling method for electron microscopy and its application to the study of filamentous appendages of bacteria. Nature, London 214, 1151.CrossRefGoogle Scholar
Lawn, A. M., Meynell, E., Meynell, G. G. & Datta, N. (1967). Sex pili and the classification of sex factors in the Enterobacteriaceae. Nature, London 216, 343.CrossRefGoogle ScholarPubMed
Lederberg, J. & Iino, T. (1956). Phase variation in Salmonella. Genetics 41, 743.CrossRefGoogle ScholarPubMed
Lewis, M. J. & Stocker, B. A. D. (1965). Properties of some Group E colicine factors. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 196, 173.Google Scholar
Maccacaro, G. A., Colombo, C., Di Nardo, A. (1959). Studi sulle fimbrie batteriche. I. Lo studio genetico delle fimbrie. Giornale di microbiologica 7, 1.Google Scholar
MacFarren, A. C. & Clowes, R. C. (1967). A comparative study of two F-like colicin factors, colV2 and colV3, in Escherichia coli K-12. Journal of Bacteriology 94, 365.CrossRefGoogle ScholarPubMed
Meynell, G. G. & Aufreiter, E. (1969). Selection of mutant bacterial sex factors determining altered sex pili. Journal of General Microbiology 59, 429.CrossRefGoogle ScholarPubMed
Meynell, E. & Cooke, M. (1969). Repressor-minus and operator-constitutive de-repressed mutants of F-like R factors: their effect on chromosomal transfer by HfrC. Genetical Research, Cambridge 14, 309.CrossRefGoogle ScholarPubMed
Meynell, G. G. & Lawn, A. M. (1967 a). Sex pili and common pili in the conjugational transfer of colicin factor Ib by Salmonella typhimurium. Genetical Research, Cambridge 9, 359.CrossRefGoogle ScholarPubMed
Meynell, G. G. & Lawn, A. M. (1967 b). The sex-factor of colicin factor Ela. Genetical Research, Cambridge 10, 323.CrossRefGoogle Scholar
Meynell, E., Meynell, G. G. & Datta, N. (1968). Phylogenetic relationships of drug-resistance factors and other transmissible bacterial plasmids. Bacteriological Reviews 32, 55.CrossRefGoogle ScholarPubMed
Nishimura, Y., Ishibashi, M., Meynell, E. & Hirota, Y. (1967). Specific piliation directed by a fertility factor and a resistance factor of Escherichia coli. Journal of General Microbiology 49, 89.CrossRefGoogle Scholar
Novick, R. P. (1969). Extrachromosomal inheritance in bacteria. Bacteriological Reviews 33, 210.CrossRefGoogle ScholarPubMed
Ørskov, I. & Ørskov, F. (1960). An antigen termed f+ occurring in F+E. coli strains. Acta pathologica et microbiologica Scandinavica 48, 37.CrossRefGoogle Scholar
Ozeki, H., Stocker, B. A. D. & Smith, S. (1962). Transmission of colicinogeny between strains of Salmonella typhimurium grown together. Journal of General Microbiology 28, 671.CrossRefGoogle Scholar
Pearce, U. B. & Stocker, B. A. D. (1967). Phase variation of flagella antigens in Salmonella: abortive transduction studies. Journal of General Microbiology 49, 335.CrossRefGoogle ScholarPubMed
Romero, E. & Meynell, E. (1969). Covert fi R factors in fi + R+ strains of bacteria. Journal of Bacteriology 97, 780.CrossRefGoogle ScholarPubMed
Sekijima, Y. & Iseki, S. (1966). On the r+ antigens of bacteria having drug resistance transfer factor R. Proceedings of the Japan Academy 42, 984.CrossRefGoogle Scholar
Uhr, J. W. & Finkelstein, M. (1963). Antibody formation. IV. Formation of rapidly and slowly sedimenting antibodies and immunological memory to bacteriophage φX174. Journal of Experimental Medicine 117, 457.CrossRefGoogle Scholar
Watanabe, T. (1963). Infective heredity of multiple drug resistance in bacteria. Bacteriological Reviews 27, 87.CrossRefGoogle ScholarPubMed