Skip to main content
×
×
Home

Source attribution of human salmonellosis using a meta-analysis of case-control studies of sporadic infections

  • A. R. DOMINGUES (a1), S. M. PIRES (a1), T. HALASA (a2) and T. HALD (a1)
Summary

Salmonella is an important cause of human illness. Disease is frequently associated with foodborne transmission, but other routes of exposure are recognized. Identifying sources of disease is essential for prioritizing public health interventions. Numerous case-control studies of sporadic salmonellosis have been published, often using different methodologies and settings. Systematic reviews consist of a formal process for literature review focused on a research question. With the objective of identifying the most important risk factors for salmonellosis, we performed a systematic review of case-control studies and a meta-analysis of obtained results. Thirty-five Salmonella case-control studies were identified. In the meta-analysis, heterogeneity between studies and possible sources of bias were investigated, and pooled odds ratios estimated. Results suggested that travel, predisposing factors, eating raw eggs, and eating in restaurants were the most important risk factors for salmonellosis. Sub-analyses by serotype were performed when enough studies were available.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Source attribution of human salmonellosis using a meta-analysis of case-control studies of sporadic infections
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Source attribution of human salmonellosis using a meta-analysis of case-control studies of sporadic infections
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Source attribution of human salmonellosis using a meta-analysis of case-control studies of sporadic infections
      Available formats
      ×
Copyright
Corresponding author
*Author for correspondence: Miss A. R. Domingues, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark. (Email: arco@food.dtu.dk)
References
Hide All
1.EFSA. The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2006. EFSA, 2007.
2.Mead, PS, et al. Food-related illness and death in the United States. Emerging Infectious Diseases 1999; 5: 607625.
3.Mølbak, K, Olsen, JE, Wegener, H. Salmonella infections. In: Riemann, HP, Cliver, DO, eds. Foodborne Infections and Intoxications, 3rd edn. London: Elsevier, 2006, pp. 57–136.
4.Baker, MG. A recurring salmonellosis epidemic in New Zealand linked to contact with sheep. Epidemiology and Infection 2007; 135: 7683.
5.Neimann, J, et al. A case-control study of risk factors for sporadic campylobacter infections in Denmark. Epidemiology and Infection 2003; 130: 353366.
6.Wallace, MA, Thompson, G. Salmonellosis in a nursing home patient on enteral feeding. American Journal of Infection Control 2006; 34: 97.
7.Engberg, J. Contributions to the epidemiology of Campylobacter infections. A review of clinical and microbiological studies. Danish Medical Bulletin 2006; 53: 361389.
8.Pires, SM, et al. Attributing the human disease burden of foodborne infections to specific sources. Foodborne Pathogens and Disease 2009; 6: 417424.
9.Clayton, D, Hills, M. Statistical Models in Epidemiology. Oxford, New York, Tokyo: Oxford University Press, 1993.
10.Stafford, RJ, et al. Population-attributable risk estimates for risk factors associated with Campylobacter infection, australia. Emerging Infectious Diseases 2008; 14: 895901.
11.Engberg, J. Contributions to the epidemiology of Campylobacter infections. A review of clinical and microbiological studies. Danish Medical Bulletin 2006; 53: 361389.
12.Khan, K, et al. Systematic reviews to support evidence-based medicine. Preventive Veterinary Medicine 2009; 87: 213228.
13.Sargeant, JM, et al. The process of systematic review and its application in agri-food public-health. Preventive Veterinary Medicine 2006; 75: 141151.
14.Domingues, A, et al. Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiology and Infection(in press).
15.Biostat Institute Inc. Comprehensive meta-analysis. Meta-Analysis Manual. Englewood, New Jersey, USA, 2008.
16.Halasa, T, et al. Meta-analysis of dry cow management for dairy cattle. Part 2. Cure of existing intramammary infections. Journal of Dairy Science 2009; 92: 31503157.
17.Borenstein, M. Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons Ltd, 2009.
18.Halasa, T, et al. Meta-analysis of dry cow management for dairy cattle. Part 1. Protection against new intramammary infections. Journal of Dairy Science 2009; 92: 31343149.
19.Duval, S, Tweedie, R. A nonparametric ‘trim and fill’ method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association 2000; 95: 8998.
20.Begg, CB, Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 10881101.
21.Egger, M, et al. Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 1997; 315: 629634.
22.Orwin, R. A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics 1983; 8: 157159.
23.Dohoo, I, Martin, S, Stryhn, H. Veterinary Epidemiological Research. Charlottetown, Prince Edward Island, Canada: AVC, 2003.
24.Pires, SM, et al. Salmonella source attribution in different European countries. Proceedings of the Food Micro Conference, Aberdeen, Scotland, 2008.
25.Hald, T, et al. A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Analysis 2004; 24: 255269.
26.Pires, SM, Hald, T. Assessing the differences in public health impact of salmonella subtypes using a bayesian microbial subtyping approach for source attribution. Foodborne Pathogens and Disease 2010; 7: 143151.
27.Ekdahl, K, et al. Travel-associated non-typhoidal salmonellosis: geographical and seasonal differences and serotype distribution. Clinical Microbiology and Infection 2005; 11: 138144.
28.Pires, SM, et al. Using outbreak data for source attribution of human salmonellosis and campylobacteriosis in Europe. Foodborne Pathogens and Disease 2010; 7: 13511361.
29.Havelaar, AH, et al. Attribution of foodborne pathogens using structured expert elicitation. Foodborne Pathogens and Diseases 2008; 5: 649659.
30.Greig, JD, Ravel, A. Analysis of foodborne outbreak data reported internationally for source attribution. International Journal of Food Microbiology 2009; 130: 7787.
31.Ferguson, CJ. Evidence for publication bias in video game violence effects literature: a meta-analytic review. Aggression and Violent behavior 12: 470482.
32.Delarocque-Astagneau, E, et al. Risk factors for the occurrence of sporadic Salmonella enterica serotype typhimurium infections in children in France: a national case-control study. Clinical Infectious Diseases 2000; 31: 488492.
33.Painter, JA, et al. Recipes for foodborne outbreaks: a scheme for categorizing and grouping implicated foods. Foodborne Pathogens and Disease 2009; 6: 12591264.
34.Doorduyn, Y, et al. Risk factors for Salmonella Enteritidis and Typhimurium (DT104 and non-DT104) infections in The Netherlands: predominant roles for raw eggs in Enteritidis and sandboxes in Typhimurium infections. Epidemiology and Infection 2006; 134: 617626.
35.Varma, JK, et al. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002–2003. Journal of Infectious Diseases 2006; 194: 222230.
36.Currie, A, et al. Frozen chicken nuggets and strips and eggs are leading risk factors for Salmonella Heidelberg infections in Canada. Epidemiology and Infection 2005; 133: 809816.
37.Dore, K, et al. Risk factors for Salmonella Typhimurium DT104 and non-DT104 infection: a Canadian multi-provincial case-control study. Epidemiology and Infec-tion 2004; 132: 485493.
38.Rowe, SY, et al. Breast-feeding decreases the risk of sporadic salmonellosis among infants in FoodNet sites. Clinical Infectious Diseases 2004; 38 (Suppl. 3): S262S270.
39.Glynn, MK, et al. Prior antimicrobial agent use increases the risk of sporadic infections with multidrug-resistant Salmonella enterica serotype Typhimurium: a FoodNet case-control study, 1996–1997. Clinical Infectious Diseases 2004; 38 (Suppl. 3): S227S236.
40.Srikantiah, P, et al. Salmonella enterica serotype Javiana infections associated with amphibian contact, Mississippi, 2001. Epidemiology and Infection 2004; 132: 273281.
41.Gupta, A, et al. Emergence of multidrug-resistant Salmonella enterica serotype Newport infections resistant to expanded-spectrum cephalosporins in the United States. Journal of Infectious Diseases 2003; 188: 17071716.
42.Parry, SM, et al. Risk factors for salmonella food poisoning in the domestic kitchen – a case control study. Epidemiology and Infection 2002; 129: 277285.
43.Indar-Harrinauth, L, et al. Emergence of Salmonella enteritidis phage type 4 in the Caribbean: case-control study in Trinidad and Tobago, West Indies. Clinical Infectious Diseases 2001; 32: 890896.
44.Sobel, J, et al. The pandemic of Salmonella enteritidis phage type 4 reaches Utah: a complex investigation confirms the need for continuing rigorous control measures. Epidemiology and Infection 2000; 125: 18.
45.Delarocque-Astagneau, E, et al. Risk factors for the occurrence of sporadic Salmonella enterica serotype typhimurium infections in children in France: a national case-control study. Clinical Infectious Diseases 2000; 31: 488492.
46.Banatvala, N, et al. Salmonellosis in North Thames (East), UK: associated risk factors. Epidemiology and Infection 1999; 122: 201207.
47.Schmid, H, et al. Risk factors for sporadic salmonellosis in Switzerland. European Journal of Clinical Microbiology and Infectious Disease 1996; 15: 725732.
48.Willocks, LJ, et al. Salmonella virchow PT 26 infection in England and Wales: a case control study investigating an increase in cases during 1994. Epidemiology and Infection 1996; 117: 3541.
49.Hedberg, CW, et al. Role of egg consumption in sporadic Salmonella enteritidis and Salmonella typhimurium infections in Minnesota. Journal of Infectious Diseases 1993; 167: 107111.
50.Marcus, R, et al. Re-assessment of risk factors for sporadic Salmonella serotype Enteritidis infections: a case-control study in five FoodNet Sites, 2002–2003. Epidemiology and Infection 2007; 135: 8492.
51.Ashbolt, R, Kirk, MD. Salmonella Mississippi infections in Tasmania: the role of native Australian animals and untreated drinking water. Epidemiology and Infection 2006; 134: 12571265.
52.Kass, PH, et al. Disease determinants of sporadic salmonellosis in four northern California counties. A case-control study of older children and adults. Annals of Epidemiology 1992; 2: 683696.
53.Beard, F, et al. Risk factors for sporadic Salmonella Birkenhead infection in Queensland and northern New South Wales: a case control study. NSW Public Health Bulletin 2004; 15: 172177.
54.Bellido-Blasco, JB, et al. Risk factors for the occurrence of sporadic Campylobacter, Salmonella and rotavirus diarrhea in preschool children. Anales de pediatría (Barcelona) 2007; 66: 367374.
55.Hayes, S, et al. Undercooked hens eggs remain a risk factor for sporadic Salmonella enteritidis infection. Communicable Disease and Public Health 1999; 2: 6667.
56.Jones, TF, et al. A case-control study of the epidemiology of sporadic Salmonella infection in infants. Pediatrics 2006; 118: 23802387.
57.Kohl, KS, et al. Relationship between home food-handling practices and sporadic salmonellosis in adults in Louisiana, United States. Epidemiology and Infection 2002; 129: 267276.
58.Passaro, DJ, et al. Epidemic Salmonella enteritidis infection in Los Angeles County, California. The predominance of phage type 4. Western Journal of Medicine 1996; 165: 126130.
59.Schutze, GE, et al. Epidemiology and molecular identification of Salmonella infections in children. Archives of Pediatrics & Adolescent Medicine 1998; 152: 659664.
60.Taylor, DN, et al. Salmonella dublin infections in the United States, 1979–1980. Journal of Infectious Diseases 1982; 146: 322327.
61.Wall, PG, et al. A case control study of infection with an epidemic strain of multiresistant Salmonella typhimurium DT104 in England and Wales. Communicable Disease Reports. CDR Reviews 1994; 4: R130R135.
62.Molbak, K, Neimann, J. Risk factors for sporadic infection with Salmonella enteritidis, Denmark, 1997–1999. American Journal of Epidemiology 2002; 156: 654661.
63.Trepka, MJ, et al. An increase in sporadic and outbreak-associated Salmonella enteritidis infections in Wiscon-sin: the role of eggs. Journal of Infectious Diseases 1999; 180: 12141219.
64.Kimura, AC, et al. Chicken consumption is a newly identified risk factor for sporadic Salmonella enterica serotype Enteritidis infections in the United States: a case-control study in FoodNet sites. Clinical Infectious Diseases 2004; 38 (Suppl. 3): S244S252.
65.Hennessy, TW, et al. Egg consumption is the principal risk factor for sporadic Salmonella serotype Heidelberg infections: a case-control study in FoodNet sites. Clinical Infectious Diseases 2004; 38 (Suppl. 3): S237S243.
66.Mermin, J, et al. Reptiles, amphibians, and human Salmonella infection: a population-based, case-control study. Clinical Infectious Diseases 2004; 38 (Suppl. 3): S253S261.
67.Kapperud, G, Stenwig, H, Lassen, J. Epidemiology of Salmonella typhimurium O: 4–12 infection in Norway: evidence of transmission from an avian wildlife reservoir. American Journal of Epidemiology 1998; 147: 774782.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: -
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed