Skip to main content Accessibility help
×
Home

Under-recognition and reporting of dengue in Cambodia: a capture–recapture analysis of the National Dengue Surveillance System

  • S. VONG (a1), S. GOYET (a1), S. LY (a1), C. NGAN (a2), R. HUY (a2), V. DUONG (a1), O. WICHMANN (a3), G. W. LETSON (a3), H. S. MARGOLIS (a3) and P. BUCHY (a1)...

Summary

Robust disease burden estimates are important for decision-making concerning introduction of new vaccines. Dengue is a major public health problem in the tropics but robust disease burden estimates are lacking. We conducted a two-sample, capture–recapture study in the largest province in Cambodia to determine disease under-recognition to the National Dengue Surveillance System (NDSS). During 2006–2008, community-based active surveillance for acute febrile illness was conducted in 0- to 19-year-olds in rural and urban areas combined with testing for dengue virus infection. Of 14 354 individuals under active surveillance (22 498 person-seasons), the annual incidence ranged from 13·4 to 57·8/1000 person-seasons. During the same period, NDSS incidence rates ranged from 1·1/1000 to 5·7/1000, which was 3·9- to 29·0-fold lower than found in the capture–recapture study. In hospitalized cases, the rate of under-recognition was 1·1- to 2·4-fold. This study shows the substantial degree of under-recognition/reporting of dengue and that reported hospitalized cases are not a good surrogate for estimating dengue disease burden.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Under-recognition and reporting of dengue in Cambodia: a capture–recapture analysis of the National Dengue Surveillance System
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Under-recognition and reporting of dengue in Cambodia: a capture–recapture analysis of the National Dengue Surveillance System
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Under-recognition and reporting of dengue in Cambodia: a capture–recapture analysis of the National Dengue Surveillance System
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: S. Vong, M.D., Head, Epidemiology and Public Health Unit, Institut Pasteur in Cambodia, 5 Bld Monivong, POB 983, Phnom Penh, Cambodia. (Email: svong@pasteur-kh.org or sirenda.vong@gmail.com)

References

Hide All
1.Gubler, DJ, Clark, G. Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerging Infectious Diseases 1995; 1: 5557.
2.Lang, J. Recent progress on Sanofi Pasteur's dengue vaccine candidate. Journal of Clinical Virology 2009; 46 (Suppl. 2): S20S4.
3.Guy, B, et al. Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects. Vaccine 2008; 26: 57125721.
4.Sun, W, et al. Phase 2 clinical trial of three formulations of tetravalent live-attenuated dengue vaccine in flavivirus-naïve adults. Human Vaccines 2009; 5: 3340.
5.Hombach, J. Guidelines for clinical trials of dengue vaccine in endemic areas. Journal of Clinical Virology 2009; 46 (Suppl. 2): S7S9.
6.DeRoeck, D, Deen, J, Clemens, JD. Policymakers' views on dengue fever/dengue haemorrhagic fever and the need for dengue vaccines in four Southeast Asian countries. Vaccine 2003; 22: 121129.
7.Mahoney, RT, et al. The introduction of new vaccines into developing countries. IV: Global access strategies. Vaccine 2007; 25: 40034011.
8.Huy, R, et al. National dengue surveillance in Cambodia 1980–2008: epidemiological and virological trends and the impact of vector control. Bulletin of the World Health Organization 2010; 88: 650657.
9.Hook, EB, Regal, RR. Capture-recapture methods. Lancet 1992; 339: 742.
10.Ministry of Planning, Government of Cambodia. General Population Census of Cambodia 2008, Provisional population totals. National Institute of Statistics, 2008.
11.Gallay, A, et al. The capture-recapture applied to epidemiology: principles, limits and application. Revue d'Epidémioliogie et de Santé Publique 2002; 50: 219232.
12.Hook, EB, Regal, RR. Recommendations for presentation and evaluation of capture-recapture estimates in epidemiology. Journal of Clinical Epidemiology 1999; 52: 917926.
13.WHO.Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control, 2nd edn. Geneva: World Health Organization, 1997.
14.Vong, S, et al. Dengue incidence in urban and rural Cambodia: results from population-based active Fever surveillance, 2006–2008. PLoS Neglected Tropical Diseases 2010; 4: e903.
15.Rossi, CA, Ksiazek, TG. Enzyme-linked immunosorbent assay (ELISA). In: Lee, HW, Calisher, C, Schmaljohn, C, eds. Manual of Hemorrhagic Fever with Renal Syndrome and Hantavirus Pulmonary Syndrome. World Health Organization Collaborating Center for Virus Reference and Research (Hantaviruses), Seoul, Korea: Asian Institute for Life Sciences, 1999, pp. 8791.
16.Hunsperger, EA, et al. Evaluation of commercially available anti-dengue virus immunoglubulin M tests. Emerging Infectious Diseases 2009; 15: 436440.
17.Lanciotti, RS, et al. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. Journal of Clinical Microbiology 1992; 30: 545551.
18.Reynes, JM, et al. Improved molecular detection of dengue virus serotype 1 variants. Journal of Clinical Microbiology 2003; 41: 38643867.
19.Finot, L. Notre transcription du Cambodgien. Bulletin de l'Ecole française d'Extrême-Orient 1902; 2: 115 (http://www.persee.fr/web/revues/home/prescript/article/befeo_0336-1519_1902_num_2_1_1094).
20.WHO.Dengue: guidelines for diagnosis, treatment, prevention and control, new edition. Geneva, World Health Organization, 2009.
21.Anderson, KB, et al. Burden of symptomatic dengue infection in children at primary school in Thailand: a prospective study. Lancet 2007; 369: 14521459.
22.Vaughn, DW, et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. Journal of Infectious Diseases 2000; 181: 29.
23.Gibbons, RV, et al. Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences. American Journal of Tropical Medicine and Hygiene 2007; 77: 910913.
24.Ngan, C, Guyant, P, Hoyer, S. Control of DHF outbreak in Cambodia, 1998. Dengue Bulletin 1998; 22: 6974.
25.Hook, EB, Regal, RR. Capture-recapture methods in epidemiology: methods and limitations. Epidemiologic Reviews 1995; 17: 243264.
26.Chao, A, et al. The applications of capture-recapture models to epidemiological data. Statistics in Medicine 2001; 20: 31233157.
27.LaPorte, RE, et al. Efficiency and accuracy of disease monitoring systems: application of capture-recapture methods to injury monitoring. American Journal of Epidemiology 1995; 142: 10691077.
28.Orton, H, Rickard, R, Miller, L. Using active medical record review and capture-recapture methods to investigate the prevalence of Down Syndrome among live-born infants in Colorado. Teratology 2001; 64: S14S19.
29.EURODIAB ACE Study Group.Variation and trends in incidence of childhood diabetes in Europe. Lancet 2000; 355: 873876.
30.McClish, D, Penberthy, L. Using Medicare data to estimate the number of cases missed by a cancer registry: a 3-source capture-recapture model. Medical Care 2004; 42: 11111116.
31.Tilling, K, Sterne, JA, Wolfe, CD. Estimation of the incidence of stroke using a capture-recapture model including covariates. International Journal of Epidemiology 2001; 30: 13511359.
32.Mahr, A, et al. Prevalences of polyarteritis nodosa, microscopic polyangiitis, Wegener's granulomatosis, and Churg-Strauss syndrome in a French urban multiethnic population in 2000: a capture-recapture estimate. Arthritis and Rheumatism 2004; 51: 9299.
33.van Hest, NA, et al. Estimating infectious diseases incidence: validity of capture-recapture analysis and truncated models for incomplete count data. Epidemiology and Infection 2008; 136: 1422.
34.Dechant, EJ, Rigau-Pérez, JG. Hospitalizations for suspected dengue in Puerto Rico, 1991–1995: estimation by capture-recapture methods. The Puerto Rico Association of Epidemiologists. American Journal of Tropical Medicine and Hygiene 1999; 61: 574578.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed