Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-2p2tb Total loading time: 0.651 Render date: 2022-01-22T19:32:10.791Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Revising the self-report strengths and difficulties questionnaire for cross-country comparisons of adolescent mental health problems: the SDQ-R

Published online by Cambridge University Press:  03 May 2019

E. L. Duinhof*
Affiliation:
Department of Interdisciplinary Social Science, Faculty of Social and Behavioural Sciences, Utrecht University, P.O. Box 80.140, 3508 TC Utrecht, The Netherlands
K. M. Lek
Affiliation:
Department Methodology and Statistics, Faculty of Social and Behavioural Sciences, Utrecht University, P.O. Box 80.140, 3508 TC Utrecht, The Netherlands
M. E. de Looze
Affiliation:
Department of Interdisciplinary Social Science, Faculty of Social and Behavioural Sciences, Utrecht University, P.O. Box 80.140, 3508 TC Utrecht, The Netherlands
A. Cosma
Affiliation:
Department of Interdisciplinary Social Science, Faculty of Social and Behavioural Sciences, Utrecht University, P.O. Box 80.140, 3508 TC Utrecht, The Netherlands Department of Psychology, Babes Bolyai University, Cluj Napoca, Republicii Street 37, 400015, Romania
J. Mazur
Affiliation:
Department of Child and Adolescent Health, Institute of Mother and Child, 01-211 Warsaw, Kasprzaka 17a str, Poland
I. Gobina
Affiliation:
Department of Public Health and Epidemiology, Faculty of Public Health and Social Welfare and Institute of Public Health, Rīga Stradiņš University, Rīga, Kronvalda bulv. 9, Latvia
A. Wüstner
Affiliation:
Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg,Germany
W. A. M. Vollebergh
Affiliation:
Department of Interdisciplinary Social Science, Faculty of Social and Behavioural Sciences, Utrecht University, P.O. Box 80.140, 3508 TC Utrecht, The Netherlands
G. W. J. M. Stevens
Affiliation:
Department of Interdisciplinary Social Science, Faculty of Social and Behavioural Sciences, Utrecht University, P.O. Box 80.140, 3508 TC Utrecht, The Netherlands
*
Author for correspondence: Edith L. Duinhof, E-mail: e.l.duinhof@uu.nl
Rights & Permissions[Opens in a new window]

Abstract

Aims

The Strengths and Difficulties Questionnaire (SDQ) has been used in many epidemiological studies to assess adolescent mental health problems, but cross-country comparisons of the self-report SDQ are scarce and so far failed to find a good-fitting, common, invariant measurement model across countries. The present study aims to evaluate and establish a version of the self-report SDQ that allows for a valid cross-country comparison of adolescent self-reported mental health problems.

Methods

Using the Health Behaviour in School-aged Children study, the measurement model and measurement invariance of the 20 items of the self-report SDQ measuring adolescent mental health problems were evaluated. Nationally representative samples of 11-, 13- and 15-year old adolescents (n = 33 233) from seven countries of different regions in Europe (Bulgaria, Germany, Greece, the Netherlands, Poland, Romania, Slovenia) were used.

Results

In order to establish a good-fitting and common measurement model, the five reverse worded items of the self-report SDQ had to be removed. Using this revised version of the self-report SDQ, the SDQ-R, partial measurement invariance was established, indicating that latent factor means assessing conduct problems, emotional symptoms, peer relationships problems and hyperactivity-inattention problems could be validly compared across the countries in this study. Results showed that adolescents in Greece scored relatively low on almost all problem subscales, whereas adolescents in Poland scored relatively high on almost all problem subscales. Adolescents in the Netherlands reported the most divergent profile of mental health problems with the lowest levels of conduct problems, low levels of emotional symptoms and peer relationship problems, but the highest levels of hyperactivity-inattention problems.

Conclusions

With six factor loadings being non-invariant, partial measurement invariance was established, indicating that the 15-item SDQ-R could be used in our cross-country comparison of adolescent mental health problems. To move the field of internationally comparative research on adolescent mental health forward, studies should test the applicability of the SDQ-R in other countries in- and outside Europe, continue to develop the SDQ-R as a cross-country invariant measure of adolescent mental health, and examine explanations for the found country differences in adolescent mental health problems.

Type
Original Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Author(s) 2019

Introduction

Worldwide, a significant percentage of adolescents experience mental health problems (Polanczyk et al., Reference Polanczyk, Salum, Sugaya, Caye and Rohde2015). As these problems are likely to continue into adulthood (Rutter et al., Reference Rutter, Kim-Cohen and Maughan2006), mental health promotion efforts in adolescence are a global public health priority (Patel et al., Reference Patel, Flisher, Hetrick and McGorry2007). To advance population-based knowledge of adolescent mental health, cross-country comparisons are essential (Achenbach et al., Reference Achenbach, Rescorla and Ivanova2012). There is clear evidence of cross-country variation in adolescent subjective well-being (e.g., life satisfaction) in Europe (Bradshaw and Richardson, Reference Bradshaw and Richardson2009; Klocke et al., Reference Klocke, Clair and Bradshaw2014; Inchley et al., Reference Inchley, Currie, Young, Samdal, Torsheim, Augustson, Mathison, Aleman-Diaz, Molcho, Weber and Barnekow2016), but global prevalence data on adolescent mental health problems are scarce (Erskine et al., Reference Erskine, Baxter, Patton, Moffitt, Patel, Whiteford and Scott2017).

The Strengths and Difficulties Questionnaire (SDQ) (Goodman, Reference Goodman1997) is one of the most frequently used instruments to assess mental health problems (i.e., emotional, behavioural and relational problems) in adolescents. It has been included in epidemiological studies in various individual countries to assess population levels of adolescent mental health problems (see http://www.sdqinfo.org). However, cross-country comparisons based on the self-report SDQ are scarce and faced methodological challenges which are lined out below (Ravens-Sieberer et al., Reference Ravens-Sieberer, Erhart, Gosch and Wille2008; Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012; Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015; Stevanovic et al., Reference Stevanovic, Urbán, Atilola, Vostanis, Singh Balhara, Avicenna, Kandemir, Knez, Franic and Petrov2015; De Vries et al., Reference De Vries, Davids, Mathews and Aarø2018).

First, samples that are compared should be nationally representative and sample characteristics, sampling methods and data collection methods should be comparable across countries (Achenbach et al., Reference Achenbach, Rescorla and Ivanova2012). However, this is often not the case in the available cross-country literature. Of the few cross-country studies that used the self-report SDQ, some only included adolescents from specific regions within countries (Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012; Stevanovic et al., Reference Stevanovic, Urbán, Atilola, Vostanis, Singh Balhara, Avicenna, Kandemir, Knez, Franic and Petrov2015), they compared national samples with different gender or age distributions (Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012; Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015; Stevanovic et al., Reference Stevanovic, Urbán, Atilola, Vostanis, Singh Balhara, Avicenna, Kandemir, Knez, Franic and Petrov2015), or they compared national samples that were collected with different sampling methods (i.e., school- v. household-based surveys) (Ravens-Sieberer et al., Reference Ravens-Sieberer, Erhart, Gosch and Wille2008), or data collection methods (e.g., collective or individual questionnaire administration) (Ravens-Sieberer et al., Reference Ravens-Sieberer, Erhart, Gosch and Wille2008; Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015), that each may impact estimates of adolescent mental health problems (e.g., Vollebergh et al., Reference Vollebergh, Van Dorsselaer, Monshouwer, Verdurmen, van der Ende and ter Bogt2006). Thus, it is not clear whether the cross-country variation observed in these studies reflect actual or methodological differences in adolescent mental health problems between countries (Achenbach et al., Reference Achenbach, Rescorla and Ivanova2012).

Second, to make valid comparisons, studies should test whether the structure of the underlying constructs measured by the SDQ (a common measurement model), and the meanings ascribed to these underlying constructs (measurement invariance) are comparable across countries. Only some of the cross-country studies on the self-report SDQ tested the (meaning of the) underlying constructs of the SDQ. These studies either did not find a common measurement model across different countries (Stevanovic et al., Reference Stevanovic, Urbán, Atilola, Vostanis, Singh Balhara, Avicenna, Kandemir, Knez, Franic and Petrov2015), or had to allow correlated residuals between items (Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015) to establish a common measurement model. Such modifications may however not replicate in different data sets (Kyriazos, Reference Kyriazos2018). Often, model fit issues were related to the five reverse worded items of the SDQ: they cross-loaded on the prosocial behaviour subscale or negatively affected the overall model fit (Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012; Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015). Those studies that did establish a common measurement model did not find evidence for measurement invariance (Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012) or established partial measurement invariance (Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015).

Because of these challenges, it has been argued that the self-report SDQ in its present form is not suitable for cross-country comparisons (Stevanovic et al., Reference Stevanovic, Jafari, Knez, Franic, Atilola, Davidovic, Bagheri and Lakic2017) and needs to be revised (Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012; Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015; Stevanovic et al., Reference Stevanovic, Urbán, Atilola, Vostanis, Singh Balhara, Avicenna, Kandemir, Knez, Franic and Petrov2015). More specifically, it has been suggested that the reverse worded items of the SDQ should be re-worded or removed (Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012). Also, it has been argued that the measurement model should be examined in countries across different regions in- and outside Europe (Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015; De Vries et al., Reference De Vries, Davids, Mathews and Aarø2018).

The present study sets out to evaluate and establish a version of the self-report SDQ that can be used to validly compare mental health problems of 11-, 13- and 15-year old adolescents across seven European countries. We attempt to overcome the former methodological challenges by (1) using national representative samples of adolescents with similar sample characteristics, assessed with similar sampling and data collection methods in seven countries of different regions in Europe (Bulgaria, Germany, Greece, the Netherlands, Poland, Romania, Slovenia), (2) establishing a good-fitting, common measurement model using cross-validation to assess the replicability of model modifications, and (3) testing the invariance of this common measurement model.

Methods

Participants

Data on the self-report SDQ from the Health Behaviour in School-aged Children (HBSC) study that were collected in the 2005/2006 (Poland), 2009/2010 (Germany, Greece) and 2013/2014 (Bulgaria, the Netherlands, Slovenia, Romania) surveys were used. HBSC is a cross-sectional, school-based survey that is conducted every 4 years across more than 40 countries in Europe and North America. Using a standardised research protocol, self-report questionnaires are administered to nationally representative samples of 11-, 13- and 15-year-olds in the classroom. Samples are drawn using cluster sampling, with schools or school classes as primary sampling units. School response rates varied by country but were >80% in all countries except in the Netherlands (49%). At the student-participant level, response rates ranged from 78 to 94%. More information can be found elsewhere (Currie et al., Reference Currie, Griebler, Inchley, Theunissen, Molcho, Samdal and Dür2010, Reference Currie, Inchley, Molcho, Lenzi, Veselska and Wild2014).

In the Netherlands (2005/2006, 2009/2010, 2013/2014) and Bulgaria (2005/2006, 2013/2014) self-report SDQ data were collected in multiple HBSC surveys. Results showing that the measurement model of the SDQ is invariant across these timepoints in the Netherlands (Duinhof et al., Reference Duinhof, Stevens, van Dorsselaer, Monshouwer and Vollebergh2015) and Bulgaria (Appendix A), justify the inclusion of only the most recent 2013/2014 data for the Netherlands and Bulgaria. We merge the 2013/2014 data of the Netherlands and Bulgaria with the 2005/2006, 2009/2010 and 2013/2014 data of the other countries, assuming that in these countries the self-report SDQ would be invariant over different timepoints as well.

The total sample consisted of 33 233 11-, 13- and 15-year old adolescents, 51% were girls (ranging between 47.7 and 53.3% across countries). No significant (p > 0.001) gender and age distribution differences were found across the country samples. Adolescents who did not fill in the SDQ (n = 279, 0.8% of the total sample) were excluded from the analyses. For the remaining samples, missing item responses ranged from 0.1 to 3.3%.

Measures

Adolescents filled in the self-report SDQ (Goodman, Reference Goodman1997) in their national language. The self-report SDQ is a 25-item questionnaire for 11–17 year olds. It consists of four subscales measuring mental health problems (conduct problems, emotional symptoms, peer relationship problems, hyperactivity-inattention problems) and one subscale measuring strengths (prosocial behaviour). In the present study, data were only available for the problem subscales. Each subscale comprises five items that are scored on a three-point ordinal Likert scale (0 = ‘Not true’, 1 = ‘Somewhat true’, 2 = ‘Certainly true’). Items are phrased in the direction of their subscales, with higher scores indicating higher problem levels, except for five reverse worded items: obedient, has good friend, generally liked, thinks before acting and good attention. The exact wording of the items and abbreviations used in this study can be found in Appendix B.

Adolescents indicated their gender by responding to the question: ‘Are you a boy or a girl?’. Age was determined based upon the participant's month and year of birth and the date of survey administration.

Analytical strategy

Analyses were performed in Mplus 8.2 (Muthén and Muthén, Reference Muthén and Muthén2017), using the weighted least squares mean and variance adjusted estimator and the theta parameterisation. Analyses were corrected for cluster effects of adolescents in the same school.

Step 1: Establishing a common measurement model

To establish a common measurement model we collated the data from all countries. A common measurement model was only established if the model showed an acceptable to good fit in this total sample and in each individual country. Based on preliminary analyses (see Appendix C) and findings from previous cross-country comparisons supporting a first-order five-factor model (Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012; Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015), a first-order model with four correlated factors measuring mental health problems was used as a starting point.

Using confirmatory factor analysis (CFA), a common measurement model was established considering the following guidelines. First, to find a parsimonious common measurement model that corresponds to the theoretical structure introduced by Goodman (Reference Goodman1997) and to protect against non-theory-driven model modifications that might not replicate in other samples (Hermida, Reference Hermida2015; Kyriazos, Reference Kyriazos2018), correlated item residuals and cross-loadings of items were not allowed. Second, items with non-significant factor loadings and/or standardised factor loadings below 0.40 were considered unacceptable (Ford et al., Reference Ford, MacCallum and Tait1986). When supported by previous empirical findings, these items were removed. Third, the overall model fit was evaluated (acceptable fit = RMSEA <0.08 and CFI >0.90; good fit = RMSEA <0.05, CFI >0.96) (Browne and Cudeck, Reference Browne and Cudeck1992; Hu and Bentler, Reference Hu and Bentler1999; Yu, Reference Yu2002). If models did not show acceptable fits, model modification indices (MI) were consulted to review misspecified model parameters. As MI may be driven by characteristics of the sample on which the measurement model is tested (Byrne, Reference Byrne2012), cross-validation was used. Of the total sample, 9/10th was used to test and modify models using MI while a random 1/10th was used for validation purposes. Only if a good fitting model was established in both the test and validation set, validation was ended.

Internal consistency of the problem subscales was examined as a quality indicator of the final common measurement model using the ordinal alpha coefficient. Ordinal alpha values above 0.70 were considered acceptable (Nunnally and Bernstein, Reference Nunnally and Bernstein1967; Gadermann et al., Reference Gadermann, Guhn and Zumbo2012).

Step 2: Invariance testing

To make valid cross-country comparisons, a common measurement model should be established (configural invariance), items should have invariant relationships to their latent factors across countries (metric invariance) and adolescents in different countries should report invariant average scores on the items (scalar invariance). The three-step method testing configural, metric and scalar models was used. First, a configural model with factor loadings and thresholds freely estimated across countries was tested. Second, a metric model with factor loadings constrained equal across countries was examined. Third, a scalar model with factor loadings and thresholds constrained equal across countries was tested.

If invariance tests indicated a lack of metric or scalar invariance, partial invariance can be established and latent means scores can still be compared across countries (Steinmetz, Reference Steinmetz2013; Bowen and Masa, Reference Bowen and Masa2015). Partial measurement invariance was established by freeing the factor loading/threshold of one item at the time, starting with the factor loading/threshold with the highest MI (Dimitrov, Reference Dimitrov2010). Our analyses showed that only MI accompanied by a meaningful expected parameter change increased model fit. Hence, both values were inspected to identify non-invariant item factor loadings/thresholds. Changes in CFI values (ΔCFI ⩾ −0.010) and RMSEA values (ΔRMSEA ⩾ 0.015) compared to the configural or metric model were used to evaluate whether (partial) invariance criteria were met (Cheung and Rensvold, Reference Cheung and Rensvold2002; Chen, Reference Chen2007). Following Dimitrov (Reference Dimitrov2010), partial measurement invariance was established if <20% of the factor loadings and thresholds were non-invariant across all countries.

Step 3: Cross-country comparisons

If (partial) measurement invariance was established, latent means were compared across countries. Since significant latent mean differences are easy to find in large samples, we applied a stringent significance level (p < 0.001) and examined the substantially of the latent mean differences by evaluating the size of the standardised latent mean differences using Cohen's d (Cohen, Reference Cohen1988). In multi-group CFA, Mplus by default fixes the means of the latent variables in the first group to zero. Bulgaria was arbitrarily set as the reference country.

Results

Step 1: Establishing a common measurement model

Table 1 shows the fit indices of the models tested to establish a common measurement model. Models testing and validating the first-order four-factor model failed to demonstrate acceptable CFI values (Table 1; Model 1 and 2). The reverse worded item obedient was not related to the conduct problem subscale in both the first (β = 0.01, p = 0.52, R 2 = 0.00), and second model (β = −0.03, p = 0.17, R 2 = 0.00). Standardised factor loadings of the other reverse worded items belonging to the peer relationship problems and hyperactivity-inattention problems subscales were unsatisfactory low with standardised factor loadings below 0.40. Only in the validation model good attention loaded just satisfactory on the hyperactivity-inattention problems subscale (β = −0.41, R 2 = 0.17).

Table 1. Fit indices of the models tested to establish a common measurement model

Note. * = p < 0.001.

a 7 adolescents in Bulgaria, 5 adolescents in Romania, and 1 adolescent in Greece had missing values on all SDQ items of the final common measurement model and were excluded from the analysis.

To increase model fit, the non-significant item obedient was removed. Model 3 and 4 show that after removing this item CFI values remained unacceptably low. Similar to Model 1 and 2, factor loadings of the remaining reverse worded items were unsatisfactorily low (β < 0.40), and only a small proportion of their variance was explained by their corresponding latent factors (R 2 range = 0.08–0.13). The MIs of Model 3 and 4 also indicated problems with the reverse worded items. In both models, the two largest MIs suggested to correlate the residuals of the reverse worded items belonging to the same subscale (peer relationship problems or hyperactivity-inattention problems). Given these findings, our aim to establish a parsimonious common measurement model that replicates in future studies, and the numerous studies indicating problems with the reverse worded items (e.g., Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012; Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015), we decided to remove the remaining reverse worded items. This resulted in a good model fit (Table 1; Model 5 and 6), with CFI values nearing 0.96 and RMSEA values below 0.05. Therefore we took this model without the reverse worded items as the final measurement model and tested its fit on the total sample and in each individual country. The final common measurement model showed a good fit on the total sample (Table 1; Model 7) and acceptable factor loadings were found for all items (β > 0.40) (Table 4). The final measurement model reached an acceptable to good fit in Bulgaria, the Netherlands, Germany, Greece and Poland, with CFI values near 0.96 and RMSEA values below or close to 0.05, and an acceptable model fit in Slovenia and Romania, with CFI values of or above 0.90, and RMSEA below 0.08 (Table 1). Except for the items steals (β = 0.33) and prefers adult (β = 0.34) in Poland, in all countries, items loaded satisfactorily on their latent factors (β > 0.40). Table 2 shows that in all countries, the emotional symptoms and hyperactivity-inattention subscales showed acceptable internal consistencies (α close to or above 0.70). The conduct problems subscale showed acceptable internal consistencies in most countries, with Greece and Slovenia reporting ordinal α values slightly below 0.70. Only in Poland, an unsatisfactorily low ordinal α value was found for the conduct problem subscale (α = 0.60). In all countries, the peer relationship problems subscale had a low internal consistency.

Table 2. Ordinal alpha values of the problem subscales in each country

Step 2: Invariance testing

Measurement invariance was tested across countries (Table 3). The configural model (i.e., the common measurement model), with no equality constraints across countries, showed an acceptable fit to the data. Constraining factor loadings equal across countries decreased the model fit (ΔCFI ⩾ 0.010), showing that latent factors had no equivalent relationships with all items across countries and that metric invariance was not supported. After the factor loadings of six items were set free in specific countries (see footnote Table 3), partial metric invariance was established. After establishing partial metric invariance, we tested for scalar invariance. Scalar invariance was found (ΔCFI = −0.006). With six-factor loadings being non-invariant of the total 45 parameters in the measurement model (i.e., 15 factor loadings and 30 thresholds), the observed percentage of non-invariance across all countries was 13.3%. The resulting final partially invariant model showed an acceptable fit to the data (Table 3; Model 4).

Table 3. Fit indices of the models testing for invariance across countries

Note. * = p < 0.001

a Factor loadings of fights in Greece and Slovenia, lies in Greece and the Netherlands, clingy in the Netherlands, prefers adult in Poland and the Netherlands, fidgety in Greece and Germany and distractible in Romania set free.

Table 4 shows that in the final partially invariant model all items loaded satisfactorily on their latent factors (βs > 0.40). Only in Poland the prefers adult item loaded unsatisfactorily low (β = 0.33) on the peer relationship problems subscale and the fights and steals items loaded just satisfactorily (βs = 0.40/0.41) on the conduct problems subscale. The final model included a warning about the high correlations between the latent factors in Romania. The results of Table 4 support this warning, especially the correlation between peer relationship problems and conduct problems is exceptionally high in Romania (r = 0.98). In general, latent factor intercorrelations were high (see Table 4), indicating that models with less factors might be a better fit to the data. However, additional CFA analyses testing a one-factor solution (measuring general mental health problems) and a two-factor solution (measuring internalising and externalising mental health problems) did not support this (see Appendix D).

Table 4. Fully standardised factor loadings and latent factor correlations of the final common measurement model and the final partially invariant model

Note. All factor loadings, explained variance (R 2), and correlations between latent factors were significant at p < 0.001.

EMO, emotional symptoms; COND, conduct problems; HYP, hyperactivity–inattention problems; PEER, peer relationship problems.

Step 3: Cross-country comparisons

To describe cross-country differences in adolescent mental health problems, Table 5 displays country rankings for each problem subscale based on the unstandardised latent mean differences, with Bulgaria as the reference country. Higher rankings indicate higher latent mean levels of adolescents' self-reported problems. Setting other countries as the reference country resulted in similar rankings. To evaluate the substantiality of these cross-country differences, Table 5 also includes standardised latent mean differences (d). Only significant (p < 0.001) and substantial (d > 0.20) latent mean differences were considered indicative of cross-country differences. Adolescents in Poland reported the highest levels of emotional symptoms and conduct problems. Adolescents in Greece reported the lowest levels of emotional symptoms (together with adolescents in Bulgaria), peer relationship problems and hyperactivity-inattention problems. Adolescents in Bulgaria, Germany and Slovenia reported the highest levels of peer relationship problems. Adolescents in the Netherlands reported the lowest levels of conduct problems, but the highest levels of hyperactivity-inattention problems.

Table 5. Cross-country rankings based on unstandardised latent mean differences and standardised latent mean differences (d) across countries

Note.* = p < 0.001; Higher rankings indicate higher mean levels of problems.

Discussion

By applying cross-validation and using nationally representative samples of seven countries of different European regions assessed with similar sampling and data collection methods, this study established a revised version for the problem subscales of the self-report SDQ (SDQ-R). To construct this good-fitting, common measurement model, the five reverse worded items of the self-report SDQ had to be removed. The SDQ-R was found to have a sufficient amount of invariant items, indicating that adolescent mental health problems could be validly compared across the seven countries in this study. By establishing the SDQ-R, this study contributes to the scarce literature on the cross-cultural validity of scales that examine adolescent mental health problems (Stevanovic et al., Reference Stevanovic, Jafari, Knez, Franic, Atilola, Davidovic, Bagheri and Lakic2017).

Our findings are in line with previous internationally comparative studies, that also indicated problems with the five reverse worded items of the SDQ (Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012; Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015). The removal of the reverse worded items led to a common measurement model that showed an acceptable to good fit in each individual country. The finding that the reverse worded items had no significant or substantial relationships with their underlying latent factors might be explained by a methodological phenomenon called reversal ambiguity (Weijters and Baumgartner, Reference Weijters and Baumgartner2012). Adolescents may not interpret the reverse worded items as opposites of the construct being measured and thus agree with both the reverse and positively worded items of the SDQ subscales. To illustrate, adolescents may agree with both the reverse worded item ‘I have one good friend or more’ and the positively worded item ‘Other children or young people pick on me or bully me’ of the peer relationship problems subscale. It is also possible that the reverse worded items tap into a different construct (e.g., Van de Looij-Jansen et al., Reference Van de Looij-Jansen, Goedhart, de Wilde and Treffers2011), and do not adequately measure a positive equivalence of mental health problems. Both these explanations substantiate our decision to remove the reverse worded items in order to establish the SDQ-R.

Notwithstanding the former, invariance tests indicated that the factor loadings of the fig hts, lies, clingy, prefers adult, fidgety and distractible items were non-invariant across all countries. Except for the fidgety item, these findings are in accordance with results from previous cross-country comparisons (Essau et al., Reference Essau, Olaya, Anastassiou-Hadjicharalambous, Pauli, Gilvarry, Bray, O'Callaghan and Ollendick2012; Ortuño-Sierra et al., Reference Ortuño-Sierra, Fonseca-Pedrero, Aritio-Solana, Velasco, de Luis, Schumann, Cattrell, Flor, Nees, Banaschewski, Bokde, Whelan, Buechel, Bromberg, Conrod, Frouin, Papadopoulos, Gallinat, Garavan, Heinz, Walter, Struve, Gowland, Paus, Poustka, Martinot, Paillère-Martinot, Vetter, Smolka and Lawrence2015). As such, partial measurement invariance is established, which means that latent means can still be compared across countries (Steinmetz, Reference Steinmetz2013). To facilitate the interpretation of latent mean differences we presented cross-country rankings.

Looking at the cross-country rankings found in this study, previous studies on cross-country variation in adolescents' subjective well-being found highly similar country rankings, with Greece and the Netherlands at the top and Poland at the bottom (Bradshaw and Richardson, Reference Bradshaw and Richardson2009; Klocke et al., Reference Klocke, Clair and Bradshaw2014; Inchley et al., Reference Inchley, Currie, Young, Samdal, Torsheim, Augustson, Mathison, Aleman-Diaz, Molcho, Weber and Barnekow2016). Whereas a recent meta-analysis found no cross-country variation in adolescents' attention-deficit/hyperactivity disorders (ADHD) (Willcutt, Reference Willcutt2012), this study found clear cross-country differences in adolescent self-reported hyperactivity-inattention problems. Interestingly, while Dutch adolescents reported the lowest levels of conduct problems and low levels of emotional symptoms and peer relationship problems, they reported by far the highest levels of hyperactivity-inattention problems. Future studies are encouraged to further investigate the found country differences in adolescent mental health problems.

In evaluating the SDQ-R some limitations should be considered. First, this study included data from different HBSC surveys. Although a recent trend analysis in the Netherlands based on the self-report SDQ revealed rather stable mental health problem levels over a 10-year period (Duinhof et al., Reference Duinhof, Stevens, van Dorsselaer, Monshouwer and Vollebergh2015), we cannot exclude the possibility that our country rankings to some extent reflect time interval differences. Second, by removing the reverse worded items, the SDQ-R measures slightly different concepts of conduct problems, peer relationship problems and hyperactivity-inattention than the original self-report SDQ. To illustrate, the original hyperactivity-inattention subscale was designed to represent the three behavioural dimensions of a DSM-IV diagnoses of ADHD (American Psychiatric Association, 2013) and includes items measuring hyperactivity, inattention and impulsiveness (Goodman, Reference Goodman2001). By removing the reverse worded item from the hyperactivity-inattention problems subscale, the impulsiveness dimension of ADHD is not included in the SDQ-R anymore, and only one item taps into the inattention dimension. However, more generally, being a brief instrument for assessing adolescent mental health problems, one can debate whether the multidimensional nature of ADHD can be captured adequately by the SDQ at all (e.g., Garrido et al., Reference Garrido, Barrada, Aguasvivas, Martínez-Molina, Arias, Golino, Legaz, Ferris and Rojo-Moreno2018).

Third, the three-step method of invariance testing requires a referent indicator to identify the model (Muthén and Muthén, Reference Muthén and Muthén2017), that is assumed to be perfectly invariant across groups. Non-invariant referent indicators may negatively impact the model fit and affect the results of invariance testing (Cheung and Rensvold, Reference Cheung and Rensvold1999; Johnson et al., Reference Johnson, Meade and DuVernet2009). A sensitivity analyses were conducted to make sure that the choice for the referent indicator did not influence the results negatively. For these, we ran several metric models by setting items consecutively as the referent indicator. The default setting (the first item as the referent indicator) showed one of the best model fits, and we continued with this metric model. Fourth, there is a debate about whether factor loadings and thresholds should be tested separately or in tandem to establish measurement invariance. We choose to test factor loadings and thresholds separately as this approach is less conservative and more explicit about the source of non-invariance (Bowen and Masa, Reference Bowen and Masa2015). Finally, CFA is known to produce inflated latent factor correlations if cross-loadings are meaningfully departing from zero in the population (Asparouhov and Muthén, Reference Asparouhov and Muthén2009; Garrido et al., Reference Garrido, Barrada, Aguasvivas, Martínez-Molina, Arias, Golino, Legaz, Ferris and Rojo-Moreno2018). For example, in Romania, the MI suggested a cross-loading between the distractible item of the hyperactivity-inattention problems subscale and the peer relationship problems subscale. In CFA, such nonzero cross-loadings are fixed to zero, which may have been an overly stringent requirement for Romania, and resulted in overestimated latent factor intercorrelations. Thus, the latent factor correlations in this study need to be interpreted with care.

Conclusion

Cross-country comparison using the SDQ have the great potential to advance our understanding of adolescent mental health. It can inform and drive global and national intervention and prevention efforts. The present study introduces a revised version of the self-report SDQ, the SDQ-R, that allowed for a valid comparison of adolescent mental health problems across seven countries of different regions in Europe. Mental health was relatively high in Greece, relatively low in Poland and most divergent in the Netherlands. To build our knowledge of adolescent mental health in- and outside Europe, future studies should further test the applicability of the SDQ-R, and further develop the self-report SDQ-R as a cross-country invariant measure of adolescent mental health problems.

Availability of data and materials

Data of the HBSC study is available upon request. For more information, see http://www.hbsc.org.

Acknowledgements

HBSC is an international study carried out in collaboration with WHO/EURO. The International Coordinators of the HBSC study were prof. Candace Currie (2005/2006, 2009/2010, 2013/2014) and Jo Inchley (2013/2014) (University of St Andrews) and the Data Bank Manager was prof. Oddrun Samdal (University of Bergen). The 2005/2006, 2009/2010, and 2013/2014 HBSC surveys in the seven countries included in our study were conducted by principal investigators: M. Richter (Germany), A. Kokkevi (Greece), L. Vasileva (Bulgaria), G. Stevens (the Netherlands), J. Mazur (Poland), A. Baban (Romania) and H. Jericek (Slovenia). For more details see http://www.hbsc.org.

Financial support

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Conflict of interest

None.

Ethical standards

Consent procedures required by ethical authorities for this type of survey were followed. Only those adolescents who volunteered to participate and whose parents did not object to their participation were included in the current study. The HBSC study protocol (Currie et al., Reference Currie, Inchley, Molcho, Lenzi, Veselska and Wild2014) sets out the ethical requirements for each country.

Appendix A

Table A1. Fit indices of the models testing for invariance between the 2005/2006 and 2013/2014 HBSC surveys in Bulgaria

Appendix B

Table B1. Items of the self-report SDQ in English and item abbreviations used in this study

Appendix C.

Table C1. Fit indices of the first-order factor models in the total sample

Appendix D.

Table D1. Fit indices of a first-order one-factor and first-order two-factor model based on the 15-item SDQ-R in the total sample and individual countries

Footnotes

* = p < 0.001.

Note. Items in bold are the reverse worded items.

* = p < 0.001.

* = p < 0.001.

References

Achenbach, TM, Rescorla, LA and Ivanova, MY (2012) International epidemiology of child and adolescent psychopathology I: diagnoses, dimensions, and conceptual issues. Journal of the American Academy of Child and Adolescent Psychiatry 51, 12611272.CrossRefGoogle ScholarPubMed
American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). Kernberg: American Psychiatric Association Publishing.Google Scholar
Asparouhov, T and Muthén, BO (2009) Exploratory structural equation modeling. Structural Equation Modeling 16, 397438.CrossRefGoogle Scholar
Bowen, NK and Masa, RD (2015) Conducting measurement invariance tests with ordinal data: a guide for social work researchers. Journal of the Society for Social Work and Research 6, 229249.CrossRefGoogle Scholar
Bradshaw, J and Richardson, D (2009) An index of child well-being in Europe. Child Indicators Research 2, 319351.CrossRefGoogle Scholar
Browne, MW and Cudeck, R (1992) Alternative ways of assessing model fit. Sociological Methods and Research 21, 230258.CrossRefGoogle Scholar
Byrne, BM (2012) Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming. New York: Routledge.Google Scholar
Chen, FF (2007) Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling 14, 464504.CrossRefGoogle Scholar
Cheung, GW and Rensvold, RB (1999) Testing factorial invariance across groups: a reconceptualization and proposed new method. Journal of Management 25, 127.CrossRefGoogle Scholar
Cheung, GW and Rensvold, RB (2002) Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling 9, 233255.CrossRefGoogle Scholar
Cohen, J (1988) Statistical Power Analysis for the Behavioral Sciences, 2nd Edn. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
Currie, C, Griebler, R, Inchley, J, Theunissen, A, Molcho, M, Samdal, O and Dür, W (2010) Health Behaviour in School-Aged Children (HBSC) Study Protocol: Background, Methodology and Mandatory Items for the 2009/2010 Survey. Edinburgh, Vienna: CAHRU, LBIHPR.Google Scholar
Currie, C, Inchley, J, Molcho, M, Lenzi, M, Veselska, Z and Wild, F (2014) Health Behaviour in School-Aged Children (HBSC) Study Protocol: Background, Methodology and Mandatory Items for the 2013/2014 Survey. St Andrews: CAHRU.Google Scholar
De Vries, PJ, Davids, EL, Mathews, C and Aarø, LE (2018) Measuring adolescent mental health around the globe: psychometric properties of the self-report strengths and difficulties questionnaire in South Africa, and comparison with UK, Australian and Chinese data. Epidemiology and Psychiatric Sciences 27, 369380.CrossRefGoogle ScholarPubMed
Dimitrov, DM (2010) Testing for factorial invariance in the context of construct validation. Measurement and Evaluation in Counseling and Development 43, 121149.CrossRefGoogle Scholar
Duinhof, EL, Stevens, GWJM, van Dorsselaer, S, Monshouwer, K and Vollebergh, WAM (2015) Ten-year trends in adolescents’ self-reported emotional and behavioral problems in the Netherlands. European Child and Adolescent Psychiatry 24, 11191128.CrossRefGoogle ScholarPubMed
Erskine, HE, Baxter, AJ, Patton, G, Moffitt, TE, Patel, V, Whiteford, HA and Scott, JG (2017) The global coverage of prevalence data for mental disorders in children and adolescents. Epidemiology and Psychiatric Sciences 26, 395402.CrossRefGoogle ScholarPubMed
Essau, CA, Olaya, B, Anastassiou-Hadjicharalambous, X, Pauli, G, Gilvarry, C, Bray, D, O'Callaghan, J and Ollendick, TH (2012) Psychometric properties of the strength and difficulties questionnaire from five European countries. International Journal of Methods in Psychiatric Research 21, 232245.CrossRefGoogle ScholarPubMed
Ford, J, MacCallum, R and Tait, M (1986) The application of exploratory factor analysis in applied psychology: a critical review and analysis. Personnel Psychology 39, 291314.CrossRefGoogle Scholar
Gadermann, AM, Guhn, M and Zumbo, BD (2012) Estimating ordinal reliability for Likert-type and ordinal item response data: a conceptual, empirical, and practical guide. Practical Assessment, Research and Evaluation 17, 113.Google Scholar
Garrido, LE, Barrada, JR, Aguasvivas, JA, Martínez-Molina, A, Arias, VB, Golino, HF, Legaz, E, Ferris, G and Rojo-Moreno, L (2018) Is small still beautiful for the Strengths and Difficulties Questionnaire? Novel findings using exploratory structural equation modeling. Assessment 119.Google ScholarPubMed
Goodman, R (1997) The strengths and difficulties questionnaire: a research note. Journal of Child Psychology and Psychiatry 38, 581586.CrossRefGoogle ScholarPubMed
Goodman, R (2001) Psychometric properties of the strengths and difficulties questionnaire. Journal of the American Academy of Child and Adolescent Psychiatry 40, 13371345.CrossRefGoogle ScholarPubMed
Hermida, R (2015) The problem of allowing correlated errors in structural equation modeling: concerns and considerations. Computational Methods in Social Sciences 3, 517.Google Scholar
Hu, L and Bentler, PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling 6, 155.CrossRefGoogle Scholar
Inchley, J, Currie, D, Young, T, Samdal, O, Torsheim, T, Augustson, L, Mathison, F, Aleman-Diaz, A, Molcho, M, Weber, M and Barnekow, V (2016) Growing up Unequal: Gender and Socioeconomic Differences in Young People's Health and Well-Being: Health Behaviour in School-Aged Children (HBSC) Study: International Report from the 2013/2014 Survey. Copenhagen: WHO Regional Office for Europe.Google Scholar
Johnson, EC, Meade, AW and DuVernet, AM (2009) The role of referent indicators in tests of measurement invariance. Structural Equation Modeling 16, 642657.CrossRefGoogle Scholar
Klocke, A, Clair, A and Bradshaw, J (2014) International variation in child subjective well-being. Child Indicators Research 7, 120.CrossRefGoogle Scholar
Kyriazos, TA (2018) Applied psychometrics: the 3-faced construct validation method, a routine for evaluating a factor structure. Psychology 9, 20442072.CrossRefGoogle Scholar
Muthén, LK and Muthén, BO (2017) User's Guide, 8th Edn. Los Angeles: Muthén & Muthén.Google Scholar
Nunnally, J and Bernstein, I (1967) Psychometric Theory. New York: McGraw-Hill.Google Scholar
Ortuño-Sierra, J, Fonseca-Pedrero, E, Aritio-Solana, R, Velasco, AM, de Luis, EC, Schumann, G, Cattrell, A, Flor, H, Nees, F, Banaschewski, T, Bokde, A, Whelan, R, Buechel, C, Bromberg, U, Conrod, P, Frouin, V, Papadopoulos, D, Gallinat, J, Garavan, H, Heinz, A, Walter, H, Struve, M, Gowland, P, Paus, T, Poustka, LM, Martinot, J-L, Paillère-Martinot, M-L, Vetter, NC, Smolka, MN and Lawrence, C (2015) New evidence of factor structure and measurement invariance of the SDQ across five European nations. European Child and Adolescent Psychiatry 24, 15231534.CrossRefGoogle ScholarPubMed
Patel, V, Flisher, AJ, Hetrick, S and McGorry, P (2007) Mental health of young people: a global public-health challenge. Lancet 369, 13021313.CrossRefGoogle ScholarPubMed
Polanczyk, GV, Salum, GA, Sugaya, LS, Caye, A and Rohde, LA (2015) Annual research review: a meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. Journal of Child Psychology and Psychiatry 56, 345365.CrossRefGoogle ScholarPubMed
Ravens-Sieberer, U, Erhart, M, Gosch, A and Wille, N (2008) Mental health of children and adolescents in 12 European countries - results from the European KIDSCREEN study. Clinical Psychology and Psychotherapy 15, 154163.CrossRefGoogle ScholarPubMed
Rutter, M, Kim-Cohen, J and Maughan, B (2006) Continuities and discontinuities in psychopathology between childhood and adult life. Journal of Child Psychology and Psychiatry 47, 276295.CrossRefGoogle ScholarPubMed
Steinmetz, H (2013) Analyzing observed composite differences across groups: is partial measurement invariance enough? Methodology 9, 112.CrossRefGoogle Scholar
Stevanovic, D, Urbán, R, Atilola, O, Vostanis, P, Singh Balhara, YP, Avicenna, M, Kandemir, H, Knez, R, Franic, T and Petrov, P (2015) Does the strengths and difficulties questionnaire-self report yield invariant measurements across different nations? Data from the International Child Mental Health Study Group. Epidemiology and Psychiatric Sciences 24, 323334.CrossRefGoogle ScholarPubMed
Stevanovic, D, Jafari, P, Knez, R, Franic, T, Atilola, O, Davidovic, N, Bagheri, Z and Lakic, A (2017) Can we really use available scales for child and adolescent psychopathology across cultures? A systematic review of cross-cultural measurement invariance data. Transcultural Psychiatry 54, 125152.CrossRefGoogle ScholarPubMed
Van de Looij-Jansen, PM, Goedhart, AW, de Wilde, EJ and Treffers, PD (2011) Confirmatory factor analysis and factorial invariance analysis of the adolescent self-report Strengths and Difficulties Questionnaire: how important are method effects and minor factors? British Journal of Clinical Psychology 50, 127144.CrossRefGoogle ScholarPubMed
Vollebergh, WA, Van Dorsselaer, S, Monshouwer, K, Verdurmen, J, van der Ende, J and ter Bogt, T (2006) Mental health problems in early adolescents in the Netherlands. Social Psychiatry and Psychiatric Epidemiology 41, 156163.CrossRefGoogle ScholarPubMed
Weijters, B and Baumgartner, H (2012) Misresponse to reversed and negated items in surveys: a review. Journal of Marketing Research 49, 737747.CrossRefGoogle Scholar
Willcutt, EG (2012) The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics 9, 490499.CrossRefGoogle ScholarPubMed
Yu, C (2002) Evaluating Cutoff Criteria of Model Fit Indices for Latent Variable Models with Binary and Continuous Outcomes (Unpublished doctoral dissertation). University of California, Los Angeles.Google Scholar
Figure 0

Table 1. Fit indices of the models tested to establish a common measurement model

Figure 1

Table 2. Ordinal alpha values of the problem subscales in each country

Figure 2

Table 3. Fit indices of the models testing for invariance across countries

Figure 3

Table 4. Fully standardised factor loadings and latent factor correlations of the final common measurement model and the final partially invariant model

Figure 4

Table 5. Cross-country rankings based on unstandardised latent mean differences and standardised latent mean differences (d) across countries

You have Access
Open access
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Revising the self-report strengths and difficulties questionnaire for cross-country comparisons of adolescent mental health problems: the SDQ-R
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Revising the self-report strengths and difficulties questionnaire for cross-country comparisons of adolescent mental health problems: the SDQ-R
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Revising the self-report strengths and difficulties questionnaire for cross-country comparisons of adolescent mental health problems: the SDQ-R
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *