Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-727vs Total loading time: 0.695 Render date: 2022-12-02T10:41:12.273Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Effect of furosemide and the equine nasal strip on exercise-induced pulmonary haemorrhage and time-to-fatigue in maximally exercising horses

Published online by Cambridge University Press:  09 March 2007

P McDonough
Affiliation:
Departments of Anatomy & Physiology and Kinesiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506–5002, USA
CA Kindig
Affiliation:
Department of Medicine, University of California at San Diego, La Jolla, CA, USA
TS Hildreth
Affiliation:
Departments of Anatomy & Physiology and Kinesiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506–5002, USA
DJ Padilla
Affiliation:
Departments of Anatomy & Physiology and Kinesiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506–5002, USA
BJ Behnke
Affiliation:
Departments of Anatomy & Physiology and Kinesiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506–5002, USA
HH Erickson
Affiliation:
Departments of Anatomy & Physiology and Kinesiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506–5002, USA
DC Poole*
Affiliation:
Departments of Anatomy & Physiology and Kinesiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506–5002, USA
Get access

Abstract

Furosemide (FUR) and the equine nasal strip (NS) decrease exercise-induced pulmonary haemorrhage (EIPH) compared with control (CON) conditions in the Thoroughbred horse during near-maximal running trials. As FUR and NS have potential performance-enhancing properties, we studied Thoroughbreds running to fatigue to test the hypothesis that time-to-fatigue (TTF) would be increased, yet EIPH reduced, in FUR and NS compared with CON. Thoroughbred geldings (n=6) were run to volitional fatigue on a level treadmill (1 m s−1 increment per minute from an initial trot) every two weeks (order randomized) under CON, NS, FUR (1 mg kg−1; 4 h prior) and FUR+NS conditions. Pulmonary arterial pressure (Ppa) and pulmonary gas exchange were measured throughout exercise, while arterial blood gases were sampled at the end of each 1-min stage. EIPH severity was quantified via bronchoalveolar lavage (BAL) at 30 min post-exercise. TTF was increased for all experimental conditions (i.e. an additional 20±13, 28±8 and 40±6 s for NS, FUR and FUR+NS, respectively; P<0.05) compared with CON. Peak mean Ppa was significantly reduced (P<0.05) for FUR (93.6±6.3 mmHg) and FUR+ NS (95.4±5.1 mmHg), yet unchanged with NS (98.0±5.8 mmHg; P>0.05) compared with CON (100.5±4.9 mmHg). All three experimental conditions exhibited a significant reduction in EIPH compared with CON (64.1±36.8× 6 red blood cells (RBCs) ml−1); however, no significant difference was noted between these conditions (×106 RBCs ml−1: 29.1±16.8, 20.9±13.1 and 26.7±19.8 for NS, FUR and FUR+NS, respectively). Furthermore, no differences for either end-exercise cardiorespiratory (i.e. V˙O2 or V˙CO2) or blood-borne metabolic (i.e. blood gases, lactate or pH) variables were observed. These findings demonstrate that both FUR and NS enhance TTF and reduce EIPH to a similar degree during high-speed treadmill running to fatigue.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Erickson, HH and Poole, DC (2002). Exercise-induced pulmonary hemorrhage. In: Lekeux, P (ed.), Equine Respiratory Diseases. Ithaca, NY: International Veterinary Information Service, pp. 17.Google Scholar
2Meyer, TS, Fedde, MR, Gaughan, EM, Langsetmo, I and Erickson, HH (1998). Quantification of exercise-induced pulmonary hemorrhage with bronchoalveolar lavage. Equine Veterinary Journal 30: 284288.CrossRefGoogle ScholarPubMed
3Pascoe, JR, Ferraro, GL, Cannon, JH, Arthur, RM and Wheat, JD (1981). Exercise-induced pulmonary hemorrhage in racing Thoroughbreds: a preliminary study. American Journal of Veterinary Research 42: 703707.Google ScholarPubMed
4Cook, WR (1974). Epistaxis in the racehorse. Equine Veterinary Journal 6: 4558.CrossRefGoogle ScholarPubMed
5Gunson, DE, Sweeney, CR and Soma, LR (1988). Sudden death attributable to exercise-induced pulmonary hemorrhage in racehorses: nine cases (1981–1983). Journal of the American Veterinary Medical Association 193: 102106.Google Scholar
6West, JB and Mathieu-Costello, O (1995). Stress failure of pulmonary capillaries as a limiting factor for maximal exercise. European Journal of Applied Physiology 70: 99108.CrossRefGoogle ScholarPubMed
7West, JB, Mathieu-Costello, O, Jones, JH, Birks, EK, Logemann, RB, Pascoe, JR et al. (1993). Stress failure of pulmonary capillaries in racehorses with exercise-induced pulmonary hemorrhage. Journal of Applied Physiology 75: 10971109.CrossRefGoogle ScholarPubMed
8West, JB, Tsukimoto, K, Mathieu-Costello, O and Prediletto, R (1991). Stress failure in pulmonary capillaries. Journal of Applied Physiology 70: 17311742.CrossRefGoogle ScholarPubMed
9Langsetmo, I, Fedde, MR, Meyer, TS and Erickson, HH (2000). Relationship of pulmonary arterial pressure to pulmonary haemorrhage in exercising horses. Equine Veterinary Journal 32: 379384.CrossRefGoogle ScholarPubMed
10Art, T, Anderson, L, Woakes, AJ, Roberts, C, Butler, PJ, Snow, DH et al. (1990). Mechanics of breathing during strenuous exercise in Thoroughbred horses. Respiration Physiology 82: 279294.CrossRefGoogle ScholarPubMed
11Kindig, CA, McDonough, P, Fenton, G, Poole, DC and Erickson, HH (2001). Efficacy of nasal strip and furosemide in mitigating EIPH in Thoroughbred horses. Journal of Applied Physiology 91: 13961400.CrossRefGoogle ScholarPubMed
12McDonough, P, Kindig, CA, Hildreth, TS, Behnke, BJ, Erickson, HH and Poole, DC (2002). Effect of body incline on cardiac performance. Equine Veterinary Journal Supplement (34): 506509.Google ScholarPubMed
13Wagner, P, Erickson, BK, Kubo, K, Hiraga, A, Kai, M, Yamaya, Y et al. (1995). Maximum oxygen transport and utilisation before and after splenectomy. Equine Veterinary Journal Supplement (18): 8289.Google Scholar
14Hinchcliff, KW and Muir, WW (1991). Pharmacology of furosemide in the horse: a review. Journal of Veterinary Internal Medicine 5: 211218.CrossRefGoogle ScholarPubMed
15Erickson, HH, Bernard, SL, Glenny, RW, Fedde, MR, Polissar, NL, Basaraba, RJ et al. (1999). Effect of furosemide on pulmonary blood flow distribution in resting and exercising horses. Journal of Applied Physiology 86: 20342043.CrossRefGoogle ScholarPubMed
16Manohar, M, Goetz, TE, Sullivan, E and Griffin, R (1998). Pulmonary vascular pressures of strenuously exercising Thoroughbred horses after administration of phenylbutazone and frusemide. Equine Veterinary Journal 30: 158162.CrossRefGoogle ScholarPubMed
17Olsen, SC, Coyne, CP, Lowe, BS, Pelletier, N, Raub, EM and Erickson, HH (1992). Influence of cyclooxygenase inhibitors on furosemide-induced hemodynamic effects during exercise in horses. American Journal of Veterinary Research 53: 15621567.Google ScholarPubMed
18Hinchcliff, KW (1999). Effects of furosemide on athletic performance and exercise-induced pulmonary hemorrhage in horses. Journal of the American Veterinary Medical Association 215: 630635.Google ScholarPubMed
19Hopper, MK, Pieschl, RL, Pelletier, NG and Erickson, HH (1991). Cardiopulmonary effects of acute blood volume alteration prior to exercise. In: Persson, SGB, Lindholm, A & Jeffcot, LB (eds), Equine Exercise Physiology 3. Davis, CA: ICEEP Publications, pp. 916.Google Scholar
20Lester, G, Clark, C, Rice, B, Steible-Hartless, C and Vetro-Widenhouse, T (1999). Effect of timing and route of administration of furosemide on pulmonary hemorrhage and pulmonary arterial pressure in exercising Thoroughbred racehorses. American Journal of Veterinary Research 60: 2228.Google ScholarPubMed
21Pelletier, N, Robinson, NE, Kaiser, L and Derksen, FJ (1988). Regional differences in endothelial function in horse lungs: possible role in blood flow distribution? Journal of Applied Physiology 85: 537542.CrossRefGoogle Scholar
22O'Callaghan, MW, Pascoe, JR, Tyler, WS and Mason, DK (1987). Exercise-induced pulmonary haemorrhage in the horse: results of a detailed clinical, post mortem and imaging study III. Subgross findings in lungs subjected to latex perfusions of the bronchial and pulmonary arteries. Equine Veterinary Journal 19: 394404.CrossRefGoogle ScholarPubMed
23Geor, RJ, Ommundson, L, Fenton, G and Pagan, JD (2001). Effects of an external nasal strip and frusemide on pulmonary haemorrhage in Thoroughbreds following high-intensity exercise. Equine Veterinary Journal 33: 577584.CrossRefGoogle ScholarPubMed
24Pascoe, JR, McCabe, AE, Franti, CE and Arthur, RM (1985). Efficacy of furosemide in the treatment of exercise-induced pulmonary hemorrhage in Thoroughbred racehorses. American Journal of Veterinary Research 46: 20002003.Google ScholarPubMed
25Hinchcliff, KW, McKeever, KH, Muir, WW and Sams, R (1993). Effect of furosemide and weight carriage on energetic responses of horses to incremental exertion. American Journal of Veterinary Research 54: 15001504.Google ScholarPubMed
26Bayly, WM, Slocombe, RF, Schott, HC and Hodgson, DR (1999). Effect of intravenous administration of furosemide on mass-specific maximal oxygen consumption and breathing mechanics in exercising horses. American Journal of Veterinary Research 60: 14151422.Google ScholarPubMed
27Holcombe, SJ, Berney, C, Cornelisse, CJ, Derksen, FJ and Robinson, E (2002). Effect of commercially available nasal strips on airway resistance in exercising horses. American Journal of Veterinary Research 63: 11011105.CrossRefGoogle ScholarPubMed
28Poole, DC, Kindig, CA, Fenton, G, Ferguson, L, Rush, BR and Erickson, HH (2000). Effects of external nasal support on pulmonary gas exchange and EIPH in the horse. Journal of Equine Veterinary Science 20: 579585.CrossRefGoogle Scholar
29McDonough, P, Kindig, CA, Erickson, HH and Poole, DC (2002). Mechanistic basis for the gas exchange threshold in Thoroughbred horses. Journal of Applied Physiology 92: 14991505.CrossRefGoogle ScholarPubMed
30Woakes, AJ, Butler, PJ and Snow, DH (1986). The measurement of respiratory airflow in exercising horses. In: Gillespie, JR & Robinson, NE (eds), Equine Exercise Physiology 2. Davis, CA: ICEEP Publications, pp. 194205.Google Scholar
31Fedde, MR (1991). Blood gas analyses on equine blood: required correction factors. Equine Veterinary Journal 23: 410412.CrossRefGoogle ScholarPubMed
32Kindig, CA, Ramsel, C, McDonough, P, Poole, DC and Erickson, HH (2003). Inclined running increases pulmonary haemorrhage in the Thoroughbred horse. Equine Veterinary Journal 35: 581585.CrossRefGoogle ScholarPubMed
33McKane, SA and Rose, RJ (1993). Radiographic determination of the location of a blindly passed bronchoalveolar lavage catheter. Equine Veterinary Education 5: 329332.CrossRefGoogle Scholar
34Langsetmo, I, Weigle, GE, Erickson, HH and Fedde, MR (1999). Influence of frusemide on dynamic cardiac variables during exercise. Equine Veterinary Journal Supplement (30): 170173.Google ScholarPubMed
35Gleed, RD, Ducharme, NG, Hackett, RP, Hakim, TS, Erb, HN, Mitchell, LM et al. (1999). Effects of frusemide on pulmonary capillary pressure in horses exercising on a treadmill. Equine Veterinary Journal Supplement (30): 102106.Google Scholar
36Aguilera-Tejero, E, Pascoe, JR and Woliner, MJ (1993). Modulation of bronchial responsiveness in horses by phenylbutazone and furosemide. American Journal of Veterinary Research 54: 17031709.Google ScholarPubMed
37Broadstone, RV, Robinson, NE, Gray, PR, Woods, PS and Derksen, FJ (1991). Effects of furosemide on ponies with recurrent airway obstruction. Pulmonary Pharmacology 4: 203208.CrossRefGoogle ScholarPubMed
38Art, T, Serteyn, D and Lekeux, P (1988). Effect of exercise on the partitioning of equine respiratory resistance. Equine Veterinary Journal 20: 268273.CrossRefGoogle ScholarPubMed
39Birks, EK, Shuler, KM, Soma, LR, Martin, BB, Marconato, L, Del Piero, F et al. (2002). EIPH: postrace endoscopic evaluation of Standardbreds and Thoroughbreds. Equine Veterinary Journal Supplement (34): 375378.Google ScholarPubMed
40Birks, EK, Mathieu-Costello, O, Fu, Z, Tyler, WS and West, JB (1997). Very high pressures are required to cause stress failure of pulmonary capillaries in Thoroughbred racehorses. Journal of Applied Physiology 82: 15841592.CrossRefGoogle ScholarPubMed
41Kurdak, SS, Namba, Y, Fu, Z, Kennedy, B, Mathieu-Costello, O and West, JB (1995). Effect of increased duration of high perfusion pressure on stress failure of pulmonary capillaries. Microvascular Research 50: 235248.CrossRefGoogle ScholarPubMed
42Elliott, AR, Fu, Z, Tsukimoto, K, Prediletto, R, Mathieu-Costello, O and West, JB (1992). Short-term reversibility of ultrastructural changes in pulmonary capillaries caused by stress failure. Journal of Applied Physiology 73: 11501158.CrossRefGoogle ScholarPubMed
43Hinchcliff, KW and McKeever, KH (1999). Frusemide and weight carriage alter the acid:base responses of horses to incremental and to brief intense exertion. Equine Veterinary Journal Supplement (30): 375379.Google ScholarPubMed
44Hinchcliff, KW, McKeever, KH, Muir, WW and Sams, RA (1996). Furosemide reduces the accumulated oxygen deficit in horses during brief intense exertion. Journal of Applied Physiology 81: 15501554.CrossRefGoogle ScholarPubMed
45Carlson, GP and Jones, JH (1999). Effects of frusemide on electrolyte and acid-base balance during exercise. Equine Veterinary Journal Supplement (30): 370374.Google ScholarPubMed
46Harkins, JD, Hackett, RP and Ducharme, NG (1993). Effect of furosemide on physiologic variables in exercising horses. American Journal of Veterinary Research 54: 21042109.Google ScholarPubMed
47Freestone, JF, Carlson, GP, Harrold, DR and Church, G (1988). Influence of furosemide treatment on fluid and electrolyte balance in horses. American Journal of Veterinary Research 49: 18991902.Google ScholarPubMed
48Gross, DK, Morley, PS, Hinchcliff, KW and Wittum, TE (1999). Effect of furosemide on performance of Thoroughbreds racing in the United States and Canada. Journal of the American Veterinary Medicine Association 215: 670675.Google ScholarPubMed
49Harms, CA and Dempsey, JA (1999). Cardiovascular consequences of exercise hyperpnea. Exercise and Sport Sciences Reviews 27: 3762.CrossRefGoogle ScholarPubMed
50Harms, CA, Wetter, TJ, St. Croix, CM, Pegelow, DF and Dempsey, JA (2000). Effects of respiratory muscle work on exercise performance. Journal of Applied Physiology 89: 131138.CrossRefGoogle ScholarPubMed
51O'Callaghan, MW, Pascoe, JR, Tyler, WS and Mason, DK (1987). Exercise-induced pulmonary haemorrhage in the horse: results of a detailed clinical, post mortem and imaging study II. Gross lung pathology. Equine Veterinary Journal 19: 389393.CrossRefGoogle ScholarPubMed
52O'Callaghan, MW, Pascoe, JR, Tyler, WS and Mason, DK (1987). Exercise-induced pulmonary haemorrhage in the horse: results of a detailed clinical, post mortem and imaging study V. Microscopic observations. Equine Veterinary Journal 19: 411418.CrossRefGoogle ScholarPubMed
53O'Callaghan, MW, Pascoe, JR, Tyler, WS and Mason, DK (1987). Exercise-induced pulmonary haemorrhage in the horse: results of a detailed clinical, post mortem and imaging study VIII. Conclusions and implications. Equine Veterinary Journal 19: 428434.CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of furosemide and the equine nasal strip on exercise-induced pulmonary haemorrhage and time-to-fatigue in maximally exercising horses
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effect of furosemide and the equine nasal strip on exercise-induced pulmonary haemorrhage and time-to-fatigue in maximally exercising horses
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effect of furosemide and the equine nasal strip on exercise-induced pulmonary haemorrhage and time-to-fatigue in maximally exercising horses
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *