Skip to main content
×
Home
    • Aa
    • Aa

Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds

  • Erik A. Papa Quiroz (a1) and P. Roberto Oliveira (a2)
Abstract

In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex objective functions on Hadamard manifolds. To reach this goal, we initially extend the concepts of regular and generalized subgradient from Euclidean spaces to Hadamard manifolds and prove that, in the convex case, these concepts coincide with the classical one. For the minimization problem, assuming that the function is bounded from below, in the quasiconvex and lower semicontinuous case, we prove the convergence of the iterations given by the method. Furthermore, under the assumptions that the sequence of proximal parameters is bounded and the function is continuous, we obtain the convergence to a generalized critical point. In particular, our work extends the applications of the proximal point methods for solving constrained minimization problems with nonconvex objective functions in Euclidean spaces when the objective function is convex or quasiconvex on the manifold.

In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex objective functions on Hadamard manifolds. To reach this goal, we initially extend the concepts of regular and generalized subgradient from Euclidean spaces to Hadamard manifolds and prove that, in the convex case, these concepts coincide with the classical one. For the minimization problem, assuming that the function is bounded from below, in the quasiconvex and lower semicontinuous case, we prove the convergence of the iterations given by the method. Furthermore, under the assumptions that the sequence of proximal parameters is bounded and the function is continuous, we obtain the convergence to a generalized critical point. In particular, our work extends the applications of the proximal point methods for solving constrained minimization problems with nonconvex objective functions in Euclidean spaces when the objective function is convex or quasiconvex on the manifold.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds
      Available formats
      ×
Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

ESAIM: Control, Optimisation and Calculus of Variations
  • ISSN: 1292-8119
  • EISSN: 1262-3377
  • URL: /core/journals/esaim-control-optimisation-and-calculus-of-variations
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 28 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.