Skip to main content
×
Home

Lipschitz modulus in convex semi-infinite optimization via d.c. functions

  • María J. Cánovas (a1), Abderrahim Hantoute (a2), Marco A. López (a3) and Juan Parra (a1)
Abstract

We are concerned with the Lipschitz modulus of the optimal set mapping associated with canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a lower and an upper bound for this modulus, both of them given exclusively in terms of the problem's data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably simplified expression. Our approach is based on variational techniques applied to certain difference of convex functions related to the model. Some results of [M.J. Cánovas et al., J. Optim. Theory Appl. (2008) Online First] (which go back to [M.J. Cánovas, J. Global Optim. 41 (2008) 1–13] and [Ioffe, Math. Surveys 55 (2000) 501–558; Control Cybern. 32 (2003) 543–554]) constitute the starting point of the present work.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Lipschitz modulus in convex semi-infinite optimization via d.c. functions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Lipschitz modulus in convex semi-infinite optimization via d.c. functions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Lipschitz modulus in convex semi-infinite optimization via d.c. functions
      Available formats
      ×
Copyright
References
Hide All
[1] Burke J.V. and Ferris M.C., Weak sharp minima in mathematical programming. SIAM J. Contr. Opt. 31 (1993) 13401359.
[2] M.J. Cánovas, F.J. Gómez-Senent and J. Parra, On the Lipschitz modulus of the argmin mapping in linear semi-infinite optimization. Set-Valued Anal. (2007) Online First.
[3] Cánovas M.J., Klatte D., López M.A. and Parra J., Metric regularity in convex semi-infinite optimization under canonical perturbations. SIAM J. Optim. 18 (2007) 717732.
[4] M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Lipschitz behavior of convex semi-infinite optimization problems: A variational approach. J. Global Optim. 41 (2008) 1–13.
[5] M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Stability of indices in the KKT conditions and metric regularity in convex semi-infinite optimization. J. Optim. Theory Appl. (2008) Online First.
[6] M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Lipschitz modulus of the optimal set mapping in convex semi-infinite optimization via minimal subproblems. Pacific J. Optim. (to appear).
[7] E. De Giorgi, A. Marino and M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acad. Nat. Lincei, Rend, Cl. Sci. Fiz. Mat. Natur. 68 (1980) 180–187.
[8] Demyanov V.F. and Rubinov A.M., Quasidifferentiable functionals. Dokl. Akad. Nauk SSSR 250 (1980) 2125 (in Russian).
[9] V.F. Demyanov and A.M. Rubinov, Constructive nonsmooth analysis, Approximation & Optimization 7. Peter Lang, Frankfurt am Main (1995).
[10] A.V. Fiacco and G.P. McCormick, Nonlinear programming. Wiley, New York (1968).
[11] M.A. Goberna and M.A. López, Linear Semi-Infinite Optimization. John Wiley & Sons, Chichester, UK (1998).
[12] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms, I. Fundamentals, Grundlehren der Mathematischen Wissenschaften 305. Springer-Verlag, Berlin (1993).
[13] Ioffe A.D., Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk 55 (2000) 103162; English translation in Math. Surveys 55 (2000) 501–558.
[14] Ioffe A.D., On rubustness of the regularity property of maps. Control Cybern. 32 (2003) 543554.
[15] D. Klatte and B. Kummer, Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic Publ., Dordrecht (2002).
[16] Klatte D. and Kummer B., Strong Lipschitz stability of stationary solutions for nonlinear programs and variational inequalities. SIAM J. Optim. 16 (2005) 96119.
[17] Klatte D. and Thiere G., A note of Lipschitz constants for solutions of linear inequalities and equations. Linear Algebra Appl. 244 (1996) 365374.
[18] P.-J. Laurent, Approximation et Optimisation. Hermann, Paris (1972).
[19] The W. Li sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program. Linear Algebra Appl. 187 (1993) 1540.
[20] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I. Springer-Verlag, Berlin (2006).
[21] G. Nürnberger, Unicity in semi-infinite optimization, in Parametric Optimization and Approximation, B. Brosowski, F. Deutsch Eds., Birkhäuser, Basel (1984) 231–247.
[22] Robinson S.M., Bounds for error in the solution set of a perturbed linear program. Linear Algebra Appl. 6 (1973) 6981.
[23] R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, USA (1970).
[24] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer-Verlag, Berlin (1997).
[25] Studniarski M. and Ward D.E., Weak sharp minima: Characterizations and sufficient conditions. SIAM J. Contr. Opt. 38 (1999) 219236.
[26] Valadier M., Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes. C. R. Acad. Sci. Paris 268 (1969) 3942.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

ESAIM: Control, Optimisation and Calculus of Variations
  • ISSN: 1292-8119
  • EISSN: 1262-3377
  • URL: /core/journals/esaim-control-optimisation-and-calculus-of-variations
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 8 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.