Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-13T20:38:27.107Z Has data issue: false hasContentIssue false

Projective Reeds-Shepp car on S2 with quadratic cost

Published online by Cambridge University Press:  19 December 2008

Ugo Boscain
Affiliation:
LE2i, CNRS UMR5158, Université de Bourgogne, 9 avenue Alain Savary - BP 47870, 21078 Dijon Cedex, France. SISSA, via Beirut 2-4, 34014 Trieste, Italy. boscain@sissa.it; rossifr@sissa.it
Francesco Rossi
Affiliation:
SISSA, via Beirut 2-4, 34014 Trieste, Italy. boscain@sissa.it; rossifr@sissa.it
Get access

Abstract

Fix two points $x,\bar{x}\in S^2$ and two directions (without orientation) $\eta,\bar\eta$ of the velocities in these points. In this paper we are interested to the problem of minimizing the cost

$J[\gamma]=\int_0^T \left({\g}_{\gamma(t)}(\dot\gamma(t),\dot\gamma(t))+ K^2_{\gamma(t)}{\g}_{\gamma(t)}(\dot\gamma(t),\dot\gamma(t)) \right) ~{\rm d}t$

along all smooth curves starting from x with direction η and ending in $\bar{x}$ with direction $\bar\eta$. Here g is the standard Riemannian metric on S2 and $K_\gamma$ is the corresponding geodesic curvature. The interest of this problem comes from mechanics and geometry of vision. It can be formulated as a sub-Riemannian problem on the lens space L(4,1). We compute the global solution for this problem: an interesting feature is that some optimal geodesics present cusps. The cut locus is a stratification with non trivial topology.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Agrachev, Methods of control theory in nonholonomic geometry, in Proc. ICM-94, Birkhauser, Zürich (1995) 1473–1483.
Agrachev, A., Exponential mappings for contact sub-Riemannian structures. J. Dyn. Contr. Syst. 2 (1996) 321358. CrossRef
Agrachev, A., Compactness for sub-Riemannian length-minimizers and subanalyticity. Rend. Sem. Mat. Univ. Politec. Torino 56 (2001) 112.
A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopedia of Mathematical Sciences 87. Springer (2004).
A. Bellaiche, The tangent space in sub-Riemannian geometry, in Sub-Riemannian Geometry, Progress in Mathematics 144, Birkhäuser, Basel (1996) 1–78.
B. Bonnard and M. Chyba, Singular trajectories and their role in control theory. Springer-Verlag, Berlin (2003).
U. Boscain and B. Piccoli, Optimal Synthesis for Control Systems on 2-D Manifolds, SMAI 43. Springer (2004).
Boscain, U. and Rossi, F., Invariant Carnot-Caratheodory metrics on S3 , SO(3), SL(2) and lens spaces. SIAM J. Contr. Opt. 47 (2008) 18511878. CrossRef
Boscain, U., Chambrion, T. and Gauthier, J.P., On the K+P problem for a three-level quantum system: Optimality implies resonance. J. Dyn. Contr. Syst. 8 (2002) 547572. CrossRef
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, Appl. Math. Series 2. American Institute of Mathematical Sciences (2007).
R.W. Brockett, Explicitly solvable control problems with nonholonomic constraints, in Proceedings of the 38th IEEE Conference on Decision and Control 1 (1999) 13–16.
Y. Chitour and M. Sigalotti, Dubins' problem on surfaces. I. Nonnegative curvature J. Geom. Anal. 15 (2005) 565–587.
Chitour, Y., Jean, F. and Trélat, E., Genericity results for singular curves. J. Differential Geometry 73 (2006) 4573. CrossRef
Citti, G. and Sarti, A., A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24 (2006) 307326. CrossRef
M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian Geometry, Progress in Mathematics 144, Birkhäuser, Basel (1996) 79–323.
V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997).
V. Jurdjevic, Optimal Control, Geometry and Mechanics, in Mathematical Control Theory, J. Bailleu and J.C. Willems Eds., Springer, New York (1999) 227–267.
Jurdjevic, V., Hamiltonian Point of View on non-Euclidean Geometry and Elliptic Functions. System Control Lett. 43 (2001) 2541. CrossRef
J. Petitot, Vers une Neuro-géométrie. Fibrations corticales, structures de contact et contours subjectifs modaux, in Mathématiques, Informatique et Sciences Humaines 145, Special issue, EHESS, Paris (1999) 5–101.
L.S. Pontryagin, V. Boltianski, R. Gamkrelidze and E. Mitchtchenko, The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc. (1961).
Reeds, J.A. and Shepp, L.A., Optimal paths for a car that goes both forwards and backwards. Pacific J. Math. 145 (1990) 367393. CrossRef
D. Rolfsen, Knots and links. Publish or Perish, Houston (1990).
Yu.L. Sachkov, Maxwell strata in Euler's elastic problem. J. Dyn. Contr. Syst. 14 (2008) 169234. CrossRef
M. Spivak, A comprehensive introduction to differential geometry. Second edition, Publish or Perish, Inc., Wilmington, Del. (1979).