Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T08:12:12.031Z Has data issue: false hasContentIssue false

A saddle-point approach to the Monge-Kantorovich optimal transport problem

Published online by Cambridge University Press:  31 March 2010

Christian Léonard*
Affiliation:
Modal-X, Université Paris Ouest, Bât. G, 200 av. de la République, 92001 Nanterre, France. christian.leonard@u-paris10.fr
Get access

Abstract

The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point method without appealing to c-conjugates. A new abstract characterization of the optimal plans is obtained in the case where the cost function takes infinite values. It leads us to new explicit sufficient and necessary optimality conditions. As by-products, we obtain a new proof of the well-known Kantorovich dual equality and an improvement of the convergence of the minimizing sequences.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. Ambrosio and A. Pratelli, Existence and stability results in the L 1-theory of optimal transportation – CIME Course, in Lecture Notes in Mathematics 1813. Springer Verlag (2003) 123–160.
M. Beiglböck and W. Schachermayer, Duality for Borel measurable cost functions. Trans. Amer. Math. Soc. (to appear).
Beiglböck, M., Goldstern, M., Maresh, G. and Schachermayer, W., Optimal and better transport plans. J. Funct. Anal. 256 (2009) 19071927. CrossRef
M. Beiglböck, C. Léonard and W. Schachermayer, A general duality theorem for the Monge-Kantorovich transport problem. Preprint (2009).
Borwein, J.M. and Lewis, A.S., Decomposition of multivariate functions. Can. J. Math. 44 (1992) 463482. CrossRef
H. Brezis, Analyse fonctionnelle – Théorie et applications. Masson, Paris (1987).
G. Dal Maso, An Introduction to Γ-Convergence. Progress in Nonlinear Differential Equations and Their Applications 8. Birkhäuser (1993).
Decreusefond, L., Wasserstein distance on configuration space. Potential Anal. 28 (2008) 283300. CrossRef
L. Decreusefond, A. Joulin and N. Savy, Upper bounds on Rubinstein distances on configuration spaces and applications. Communications on Stochastic Analysis (to appear).
I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Classics in Applied Mathematics 28. SIAM (1999).
Feyel, D. and Üstünel, A.S., Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theory Relat. Fields 128 (2004) 347385. CrossRef
Léonard, C., Convex minimization problems with weak constraint qualifications. Journal of Convex Analysis 17 (2010) 312348.
J. Neveu, Bases mathématiques du calcul des probabilités. Masson, Paris (1970).
Pratelli, A., On the sufficiency of the c-cyclical monotonicity for optimality of transport plans. Math. Z. 258 (2008) 677690. CrossRef
S. Rachev and L. Rüschendorf, Mass Transportation Problems. Vol. I: Theory, Vol. II: Applications. Springer-Verlag, New York (1998).
Rüschendorf, L., On c-optimal random variables. Statist. Probab. Lett. 27 (1996) 267270. CrossRef
Schachermayer, W. and Teichman, J., Characterization of optimal transport plans for the Monge-Kantorovich problem. Proc. Amer. Math. Soc. 137 (2009) 519529. CrossRef
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58. American Mathematical Society, Providence (2003).
C. Villani, Optimal Transport – Old and New, Grundlehren der mathematischen Wissenschaften 338. Springer (2009).