[1]
Avishai, Y., Bessis, D., Giraud, B.G. and Mantica, G., Quantum bound states in open
geometries. *Phys. Rev. B*
44 (1991)
8028–8034.

[2] M.Sh. Birman and M.Z. Solomjak, Spectral theory of
selfadjoint operators in Hilbert space. Translated from the 1980 Russian original by S.
Khrushchëv and V. Peller. *Math. Appl.* (Soviet Series). D. Reidel
Publishing Co., Dordrecht (1987).

[3]
Borisov, D., Bunoiu, R. and Cardone, G., On a waveguide with frequently
alternating boundary conditions : homogenized Neumann condition.
*Ann. Henri Poincaré*
11 (2010)
1591–1627.

[4]
Borisov, D., Bunoiu, R. and Cardone, G., On a waveguide with an infinite
number of small windows. *C. R. Math. Acad. Sci. Paris,
Ser. I*
349 (2011) 53–56.

[5]
Borisov, D., Bunoiu, R. and Cardone, G., Homogenization and asymptotics
for a waveguide with an infinite number of closely located small
windows. *Prob. Math. Anal.*
58 (2011) 59–68;
*J. Math. Sci.*
**176** (2011) 774-785.

[6] D. Borisov, R. Bunoiu and G. Cardone, Waveguide
with non-periodically alternating Dirichlet and Robin conditions : homogenization and
asymptotics. *Z. Angew. Math. Phys.* (ZAMP), DOI 10.1007/s00033-012-0264-2.
[7]
Borisov, D. and Cardone, G., Homogenization of the planar
waveguide with frequently alternating boundary conditions.
*J. Phys. A, Math. Theor.*
42 (2009) 365205.

[8]
Borisov, D. and Cardone, G., Planar Waveguide with “Twisted”
Boundary Conditions : Discrete Spectrum. *J. Math.
Phys.*
52 (2011) 123513.

[9]
Borisov, D. and Cardone, G., Planar Waveguide with “Twisted”
Boundary Conditions : Small Width. *J. Math.
Phys.*
53 (2012) 023503.

[10]
Borisov, D., Exner, P., Gadyl’shin, R., and Krejčiřík, D.,
Bound states in weakly deformed strips and layers. *Ann.
Henri Poincaré*
2 (2001) 553–572.

[11]
Bulla, W., Gesztesy, F., Renger, W. and Simon, B., Weakly coupled bound states in
quantum waveguides. *Proc. Amer. Math.
Soc.*
125 (1997)
1487–1495.

[12]
Cardone, G., Minutolo, V. and
Nazarov, S.A., Gaps in the essential spectrum
of periodic elastic waveguides. *Z. Angew. Math.
Mech.*
89 (2009)
729–741.

[13]
Cardone, G., Nazarov, S.A. and Perugia, C., A gap in the continuous
spectrum of a cylindrical waveguide with a periodic perturbation of the
surface. *Math. Nach.*
283 (2010)
1222–1244.

[14]
Cardone, G., Nazarov, S.A. and Ruotsalainen, K., Asymptotics of an
eigenvalue in the continuous spectrum of a converging waveguide.
*Mat. Sb.*
203 (2012) 3–32.

[15]
Cardone, G., Minutolo, V. and
Nazarov, S.A., Gaps in the essential spectrum
of periodic elastic waveguides. *Z. Angew. Math.
Mech.*
89 (2009)
729–741.

[16]
Cardone, G., Nazarov, S.A. and Perugia, C., A gap in the continuous
spectrum of a cylindrical waveguide with a periodic perturbation of the
surface. *Math. Nach.*
283 (2010)
1222–1244.

[17]
Duclos, P. and Exner, P., Curvature-induced bound states in
quantum waveguides in two and three dimensions. *Rev.
Math. Phys.*
7 (1995) 73–102.

[18]
Exner, P. and Vugalter, S.A., Bound states in a locally
deformed waveguide : the critical case. *Lett. Math.
Phys.*
39 (1997) 59–68.

[19]
Gadyl’shin, R.R., On local perturbations of
quantum waveguides. (Russian)
*Teoret. Mat. Fiz.*
145 (2005)
358–371; Engl. transl. : *Theoret. Math.
Phys.*
**145** (2005) 1678–1690.

[20]
Grushin, V.V., On the eigenvalues of a
finitely perturbed Laplace operator in infinite cylindrical domains.
*Mat. Zametki*
75 (2004)
360–371; Engl. transl. : *Math. Notes*
**75** (2004) 331–340.

[21]
Jones, D.S., The eigenvalues of
∇^{2}*u* + *λu* = 0 when the boundary conditions
are given on semi-infinite domains. *Proc. Cambridge
Philos. Soc.*
49 (1953)
668–684.

[22]
Kondratiev, V.A., Boundary value problems for
elliptic problems in domains with conical or corner points,
*Trudy Moskov. Matem. Obshch*
16 (1967)
209–292. Engl. transl. : *Trans. Moscow Math.
Soc.*
**16** (1967) 227–313.

[23] Maz’ya, V.G. and
Plamenevskii, B.A., On coefficients in
asymptotics of solutions of elliptic boundary value problems in a domain with conical
points, *Math. Nachr.*
76 (1977) 29–60;
Engl. transl. : *Amer. Math. Soc. Transl.*
**123** (1984) 57–89.

[24]
Maz’ya, V.G. and Plamenevskii, B.A., Estimates in
*L* ^{p} and Hölder classes and the
Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in
domains with singular points on the boundary. *Math.
Nachr.*
81 (1978) 25–82;
Engl. transl. : *Amer. Math. Soc. Transl. Ser.*
**123** (1984) 1–56.

[25] V.G. Maz’ya, S.A. Nazarov and B.A. Plamenevskij,
Boris Asymptotic theory of elliptic boundary value problems in singularly perturbed
domains II, Translated from the German by Plamenevskij. *Operator Theory : Advances
and Applications*. Birkhäuser Verlag, Basel **112** (2000).

[26]
Nazarov, S.A., Two-term asymptotics of
solutions of spectral problems with singular perturbations,
*Mat. sbornik.*
178 (1991)
291–320; Engl. transl. : *Math. USSR.
Sbornik.*
**69** (1991) 307–340.

[27]
Nazarov, S.A., Discrete spectrum of cranked,
branchy and periodic waveguides, *Algebra i
analiz*
23 (2011)
206–247; Engl. transl. : *St. Petersburg Math.
J.*
**23** (2011).

[28] S.A. Nazarov and B.A. Plamenevsky,
*Elliptic problems in domains with piecewise smooth boundaries*. Nauka,
Moscow (1991); Engl. transl. : *Elliptic problems in domains with piecewise smooth
boundaries*. Walter de Gruyter, Berlin, New York (1994).