[1] Austin, T.M., Trew, M.L. and Pullan, A.J., Solving the cardiac Bidomain equations for discontinuous conductivities. *IEEE Trans. Biomed. Eng.* 53 (2006) 1265–1272.

[2] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M. Knepley, L. Curfman McInnes, B.F. Smith and H. Zhang, PETSc Users Manual.Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory (2002).

[3] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M. Knepley, L. Curfman McInnes, B.F. Smith and H. Zhang, PETSc home page. http://www.mcs.anl.gov/petsc (2001).

[4] Boulakia, M., Cazeau, S., Fernandez, M.A., Gerbeau, J.-F. and Zemzemi, N., Mathematical modeling of electrocardiograms: a numerical study. *Ann. Biomed. Eng.* 38 (2010) 1071–1097.

[5] Clayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, A.V., Sachse, F.B., Seemann, G. and Zhang, H., Models of cardiac tissue electrophysiology: Progress, challenges and open questions. *Progr. Biophys. Molec. Biol.* 104 (2011) 22–48.

[6] Colli Franzone, P. and Pavarino, L.F., A parallel solver for reaction-diffusion systems in computational electrocardiology. *Math. Mod. Meth. Appl. Sci.* 14 (2004) 883–911.

[7] P. Colli Franzone, L.F. Pavarino and S. Scacchi, Mathematical and numerical methods for reaction–diffusion models in electrocardiology, in *Modeling of Physiological flows*, edited by D. Ambrosi, A. Quarteroni and G. Rozza. Springer (2011) 107–142.

[8] Colli Franzone, P., Pavarino, L.F. and Taccardi, B., Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. *Math. Biosci.* 197 (2005) 33–66.

[9] Colli Franzone, P., Deuflhard, P., Erdmann, B., Lang, J. and Pavarino, L.F., Adaptivity in space and time for reaction-diffusion systems in Electrocardiology. *SIAM J. Sci. Comput.* 28 (2006) 942–962.

[10] Deuflhard, P., Erdmann, B., Roitzsch, R. and Lines, G.T., Adaptive finite element simulation of ventricular fibrillation dynamics. *Comput. Visual. Sci.* 12 (2009) 201–205.

[11] Dryja, M., Sarkis, M.V. and Widlund, O.B., Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. *Numer. Math.* 72 (1996) 313–348.

[12] Dryja, M. and Widlund, O.B., Multilevel additive methods for elliptic finite element problems. *Parallel algorithms for partial differential equations (Kiel 1990) Notes Numer. Fluid Mech.* 31 (1991) 58–69.

[13] Dryja, M. and Widlund, O.B., Domain decomposition algorithms with small overlap. *SIAM J. Sci. Comput.* 15 (1994) 604–620.

[14] Ethier, M. and Bourgault, Y., Semi-implicit time-discretization schemes for the Bidomain model. *SIAM J. Numer. Anal.* 46 (2008) 2443–2468.

[15] Fernandez, M.A. and Zemzemi, N., Decoupled time–marching schemes in computational cardiac electrophysiology and ECG numerical simulation. *Math. Biosci.* 226 (2010) 58–75.

[16] Fink, M., Niederer, S.A., Cherry, E.M., Fenton, F.H., Koivumaki, J.T., Seemann, G., Rudiger, T., Zhang, H., Sachse, F.B., Beard, D., Crampin, E.J. and Smith, N.P., Cardiac cell modelling: observations from the heart of the cardiac physiome project. *Prog. Biophys. Mol. Biol.* 104 (2011) 2–21.

[17] Giorda, L.G., Mirabella, L., Nobile, F., Perego, M. and Veneziani, A., A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. *J. Comput. Phys.* 228 (2009) 3625–3639.

[18] Gerardo Giorda, L., Perego, M. and Veneziani, A., Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology. *Math. Model. Numer. Anal.* 45 (2011) 309–334.

[19] LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B. and Hunter, P.J., Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. *Amer. J. Physiol. Heart Circ. Physiol.* 269 (1995) H571–H582.

[20] Linge, S., Sundnes, J., Hanslien, M., Lines, G.T. and Tveito, A., Numerical solution of the bidomain equations. *Philos. Trans. R. Soc. A* 367 (2009) 1931–1950.

[21] Luo, C. and Rudy, Y., A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. *Circ. Res.* 68 (1991) 1501–1526.

[22] Mardal, K.-A., Nielsen, B.F., Cai, X. and Tveito, A., An order optimal solver for the discretized bidomain equations. *Numer. Linear Algebra Appl.* 14 (2007) 83–98.

[23] G. Karypis and V. Kumar, MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/~metis/. University of Minnesota, Minneapolis, MN (2009). [24] Munteanu, M. and Pavarino, L.F., Decoupled Schwarz algorithms for implicit discretization of nonlinear Monodomain and Bidomain systems. *Math. Mod. Meth. Appl. Sci.* 19 (2009) 1065–1097.

[25] Munteanu, M., Pavarino, L.F. and Scacchi, S.. A scalable Newton-Krylov-Schwarz method for the Bidomain reaction-diffusion system. *SIAM J. Sci. Comput.* 31 (2009) 3861–3883.

[26] Murillo, M. and Cai, X.-C., A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart. *Numer. Linear Algebra Appl.* 11 (2004) 261–277.

[27] Neu, J.S. and Krassowska, W., Homogenization of syncytial tissues. *Crit. Rev. Biomed. Eng.* 21 (1993) 137–199.

[28] Pathmanathan, P., Bernabeu, M.O., Bordas, R., Cooper, J., Garny, A., Pitt-Francis, J.M., Whiteley, J.P. and Gavaghan, D.J., A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. *Progr. Biophys. Molec. Biol.* 102 (2010) 136–155.

[29] Pavarino, L.F. and Scacchi, S., Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. *SIAM J. Sci. Comput.* 31 (2008) 420–443.

[30] Pavarino, L.F. and Scacchi, S., Parallel Multilevel Schwarz and Block Preconditioners for the Bidomain Parabolic-Parabolic and Parabolic-Elliptic Formulations. *SIAM J. Sci. Comput.* 33 (2011) 1897–1919.

[31] Pennacchio, M., Savaré, G. and Franzone, P.C.. Multiscale modeling for the bioelectric activity of the heart. *SIAM J. Math. Anal.* 37 (2006) 1333–1370.

[32] Pennacchio, M. and Simoncini, V., Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process. *J. Comput. Appl. Math.* 145 (2002) 49–70.

[33] Pennacchio, M. and Simoncini, V., Algebraic multigrid preconditioners for the bidomain reaction-diffusion system. *Appl. Numer. Math.* 59 (2009) 3033–3050.

[34] Pennacchio, M. and Simoncini, V., Fast structured AMG preconditioning for the bidomain model in electrocardiology. *SIAM J. Sci. Comput.* 33 (2011) 721–745.

[35] Plank, G., Liebmann, M., Weber dos Santos, R., Vigmond, E.J. and Haase, G., Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model. *IEEE Trans. Biomed. Eng.* 54 (2007) 585–596.

[36] Potse, M., Dubè, B., Richer, J., Vinet, A. and Gulrajani, R., A comparison of Monodomain and Bidomain reaction–diffusion models for action potential propagation in the human heart. *IEEE Trans. Biomed. Eng.* 53 (2006) 2425–2434.

[37] P.-A. Raviart, The use of numerical integration in finite element methods for solving parabolic equations. In *Topics in Numerical Analysis*, edited by J.J.H. Miller. Academic Press (1973) 233–264.

[38] Qu, Z. and Garfinkel, A., An advanced algorithm for solving partial differential equation in cardiac conduction. *IEEE Trans. Biomed. Eng.* 46 (1999) 1166–1168.

[39] A. Quarteroni and A. Valli, *Numerical Approximation of Partial Differential Equations.* Springer (1997).

[40] Scacchi, S., A hybrid multilevel Schwarz method for the bidomain model. *Comput. Methods Appl. Mech. Eng.* 197 (2008) 4051–4061.

[41] Scacchi, S., A multilevel hybrid Newton-Krylov-Schwarz method for the Bidomain model of electrocardiology. *Comput. Methods Appl. Mech. Eng.* 200 (2011) 717–725.

[42] Scacchi, S., Colli Franzone, P., Pavarino, L.F. and Taccardi, B., Computing cardiac recovery maps from electrograms and monophasic action potentials under heterogeneous and ischemic conditions. *Math. Mod. Methods Appl. Sci.* 20 (2010) 1089–1127.

[43] Skouibine, K.B., Trayanova, N. and Moore, P., A numerically efficient model for the simulation of defibrillation in an active bidomain sheet of myocardium. *Math. Biosci.* 166 (2000) 85–100.

[44] B.F. Smith, P. Bjørstad and W.D. Gropp, *Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations*, Cambridge University Press (1996).

[45] Southern, J.A., Plank, G., Vigmond, E.J. and Whiteley, J.P., Solving the coupled system improves computational efficiency of the Bidomain equations. *IEEE Trans. Biomed. Eng.* 56 (2009) 2404–2412.

[46] Sundnes, J., Lines, G.T., Mardal, K.A. and Tveito, A., Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. *Comput. Methods Biomech. Biomed. Eng.* 5 (2002) 397–409.

[47] Sundnes, J., Lines, G.T. and Tveito, A., An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. *Math. Biosci.* 194 (2005) 233–248.

[49] V. Thomée, *Galerkin Finite Element Methods for Parabolic Problems.* Springer (1997).

[50] A. Toselli and O.B. Widlund, *Domain Decomposition Methods: Algorithms and Theory. Comput. Math.* Springer-Verlag, Berlin **34** (2004).

[51] Trangenstein, J.A. and Kim, C., Operator splitting and adaptive mesh refinement for the Luo-Rudy I model. *J. Comput. Phys.* 196 (2004) 645–679.

[52] Vigmond, E.J., Aguel, F. and Trayanova, N.A., Computational techniques for solving the bidomain equations in three dimensions. *IEEE Trans. Biomed. Eng.* 49 (2002) 1260–1269.

[53] Vigmond, E.J., Weber dos Santos, R., Prassl, A.J., Deo, M. and Plank, G., Solvers for the cardiac bidomain equations. *Progr. Biophys. Molec. Biol.* 96 (2008) 3–18.

[54] Weber dos Santos, R., Plank, G., Bauer, S. and Vigmond, E.J., Parallel multigrid preconditioner for the cardiac bidomain model. *IEEE Trans. Biomed. Eng.* 51 (2004) 1960–1968.

[55] Whiteley, J.P., An efficient numerical technique for the solution of the monodomain and bidomain equations. *IEEE Trans. Biomed. Eng.* 53 (2006) 2139–2147.

[56] Zaniboni, M., 3D current-voltage-time surfaces unveil critical repolarization differences underlying similar cardiac action potentials: A model study. *Math. Biosci.* 233 (2011) 98–110.

[57] Zhang, X., Multilevel Schwarz methods. *Numer. Math.* 63 (1992) 521–539.