Published online by Cambridge University Press: 03 October 2014
In this paper, we propose a method for the approximation of the solution ofhigh-dimensional weakly coercive problems formulated in tensor spaces using low-rankapproximation formats. The method can be seen as a perturbation of a minimal residualmethod with a measure of the residual corresponding to the error in a specified solutionnorm. The residual norm can be designed such that the resulting low-rank approximationsare optimal with respect to particular norms of interest, thus allowing to take intoaccount a particular objective in the definition of reduced order approximations ofhigh-dimensional problems. We introduce and analyze an iterative algorithm that is able toprovide an approximation of the optimal approximation of the solution in a given low-ranksubset, without any a priori information on this solution. We alsointroduce a weak greedy algorithm which uses this perturbed minimal residual method forthe computation of successive greedy corrections in small tensor subsets. We prove itsconvergence under some conditions on the parameters of the algorithm. The proposednumerical method is applied to the solution of a stochastic partial differential equationwhich is discretized using standard Galerkin methods in tensor product spaces.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.