Skip to main content
×
×
Home

Asymptotic normality and efficiency of two Sobol index estimators

  • Alexandre Janon (a1), Thierry Klein (a2), Agnès Lagnoux (a2), Maëlle Nodet (a1) and Clémentine Prieur (a1)...
Abstract

Many mathematical models involve input parameters, which are not precisely known. Global sensitivity analysis aims to identify the parameters whose uncertainty has the largest impact on the variability of a quantity of interest (output of the model). One of the statistical tools used to quantify the influence of each input variable on the output is the Sobol sensitivity index. We consider the statistical estimation of this index from a finite sample of model outputs: we present two estimators and state a central limit theorem for each. We show that one of these estimators has an optimal asymptotic variance. We also generalize our results to the case where the true output is not observable, and is replaced by a noisy version.

Copyright
References
Hide All
[1] G.E.P. Box and N.R. Draper, Empirical model-building and response surfaces. John Wiley and Sons (1987).
[2] R. Carnell, lhs: Latin Hypercube Samples (2009). R package version 0.5.
[3] W. Chen, R. Jin and A. Sudjianto, Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty. Vol. 127 of Transactions-American Society Of Mechanical Engineers Journal Of Mechanical Design (2005).
[4] Cukier, R.I., Levine, H.B. and Shuler, K.E., Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 26 (1978) 142.
[5] Da Veiga, S. and Gamboa, F., Efficient estimation of sensitivity indices. J. Nonparametric Statist. 25 (2013) 573595.
[6] G.M. Dancik, mlegp: Maximum Likelihood Estimates of Gaussian Processes (2011). R package version 3.1.2.
[7] T. Hayfield and J.S. Racine, Nonparametric econometrics: The np package. J. Statist. Softw. 27 (2008).
[8] Helton, J.C., Johnson, J.D., Sallaberry, C.J. and Storlie, C.B., Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91 (2006) 11751209.
[9] Homma, T. and Saltelli, A., Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52 (1996) 117.
[10] I.A. Ibragimov and R.Z. Has’ Minskii, Statistical estimation–asymptotic theory. Vol. 16 of Appl. Math. Springer−Verlag, New York (1981).
[11] T. Ishigami and T. Homma, An importance quantification technique in uncertainty analysis for computer models, in Proc. of First International Symposium on Uncertainty Modeling and Analysis, 1990. IEEE (1990) 398–403.
[12] Janon, A., Nodet, M. and Prieur, C., Certified reduced-basis solutions of viscous Burgers equations parametrized by initial and boundary values. ESAIM: M2AN 47 (2013) 317348.
[13] Janon, A., Nodet, M. and Prieur, C., Uncertainties assessment in global sensitivity indices estimation from metamodels. Internat. J. Uncert. Quantification 4 (2014) 2136.
[14] Kahan, W., Pracniques: further remarks on reducing truncation errors. Commun. ACM 8 (1965) 40.
[15] Madych, W.R. and Nelson, S.A., Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70 (1992) 94114.
[16] Marrel, A., Iooss, B., Laurent, B. and Roustant, O., Calculations of sobol indices for the gaussian process metamodel. Reliab. Eng. Syst. Saf. 94 (2009) 742751.
[17] H. Monod, C. Naud and D. Makowski, Uncertainty and sensitivity analysis for crop models, in Chap. 4 of Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications. Edited by D. Wallach, D. Makowski and J. W. Jones. Elsevier (2006) 55–99.
[18] V.I. Morariu, B.V. Srinivasan, V.C. Raykar, R. Duraiswami and L.S. Davis, Automatic online tuning for fast gaussian summation, in Advances in Neural Information Processing Systems, NIPS (2008).
[19] N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook Mater. Model. (2005) 1523–1558.
[20] R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011). ISBN 3-900051-07-0.
[21] Racine, J., An efficient cross-validation algorithm for window width selection for nonparametric kernel regression. Commun. Stat. Simul. Comput. 22 (1993) 11071107.
[22] A. Saltelli, K. Chan and E.M. Scott, Sensitivity analysis. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester (2000).
[23] A. Saltelli, S. Tarantola, F. Campolongo and M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models (2004).
[24] T. J. Santner, B. Williams and W. Notz, The Design and Analysis of Computer Experiments. Springer−Verlag (2003).
[25] R. Schaback, Mathematical results concerning kernel techniques. In Prep. 13th IFAC Symposium on System Identification, Rotterdam. Citeseer (2003) 1814–1819.
[26] M. Scheuerer, R. Schaback and M. Schlather, Interpolation of spatial data – a stochastic or a deterministic problem? Universität Göttingen (2011) http://num.math.uni-goettingen.de/schaback/research/papers/IoSD.pdf.
[27] Sobol, I.M., Sensitivity estimates for nonlinear mathematical models. Math. Modeling Comput. Experiment 1 (1995) 407414, 1993.
[28] Sobol, I.M., Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55 (2001) 271280.
[29] Storlie, C.B., Swiler, L.P., Helton, J.C. and Sallaberry, C.J., Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliab. Eng. Syst. Saf. 94 (2009) 17351763.
[30] Sudret, B., Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93 (2008) 964979.
[31] J.Y. Tissot and C. Prieur, A bias correction method for the estimation of sensitivity indices based on random balance designs. Reliab. Eng. Syst. Saf. (2010).
[32] A.W. van der Vaart, Asymptotic statistics. Vol. 3 of Cambr. Series Statist. Probab. Math. Cambridge University Press, Cambridge (1998).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

ESAIM: Probability and Statistics
  • ISSN: 1292-8100
  • EISSN: 1262-3318
  • URL: /core/journals/esaim-probability-and-statistics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed