[1] Ahmad, I.A. and Lin, P.E., A nonparametric estimation of the entropy for absolutely continuous distributions. *IEEE Trans. Inf. Theory* 22 (1976) 372–375.

[2] Ahmad, I.A. and Lin, P.E., A nonparametric estimation of the entropy for absolutely continuous distributions. *IEEE Trans. Inf. Theory* 36 (1989) 688–692.

[3] Andrieu, C. and Thoms, J., A tutorial on adaptive MCMC. *Stat. Comput.* 18 (2008) 343–373.

[4] Atchadé, Y.F. and Rosenthal, J., On adaptive Markov chain Monte Carlo algorithms. *Bernoulli* 11 (2005) 815–828.

[5] P. Billingsley, *Probability and Measure*, 3rd edition. Wiley, New York (2005).

[6] Chauveau, D. and Vandekerkhove, P., Improving convergence of the Hastings-Metropolis algorithm with an adaptive proposal. *Scand. J. Stat.* 29 (2002) 13–29.

[7] Chauveau, D. and Vandekerkhove, P., A Monte Carlo estimation of the entropy for Markov chains. *Methodol. Comput. Appl. Probab.* 9 (2007) 133–149.

[8] Dmitriev, Y.G. and Tarasenko, F.P., On the estimation of functionals of the probability density and its derivatives. *Theory Probab. Appl.* 18 (1973) 628–633.

[9] Dmitriev, Y.G. and Tarasenko, F.P., On a class of non-parametric estimates of non-linear functionals of density. *Theory Probab. Appl.* 19 (1973) 390–394.

[10] Douc, R., Guillin, A., Marin, J.M. and Robert, C.P., Convergence of adaptive mixtures of importance sampling schemes. *Ann. Statist.* 35 (2007) 420–448.

[11] Dudevicz, E.J. and Van Der Meulen, E.C. Entropy-based tests of uniformity. *J. Amer. Statist. Assoc.* 76 (1981) 967–974.

[12] Eggermont, P.P.B. and LaRiccia, V.N., Best asymptotic normality of the Kernel density entropy estimator for Smooth densities. *IEEE Trans. Inf. Theory* 45 (1999) 1321–1326.

[13] W.R. Gilks, S. Richardson and D.J. Spiegelhalter, *Markov Chain Monte Carlo in practice*. Chapman & Hall, London (1996)

[14] Gilks, W.R., Roberts, G.O. and Sahu, S.K., Adaptive Markov chain Monte carlo through regeneration. *J. Amer. Statist. Assoc.* 93 (1998) 1045–1054.

[15] Györfi, L. and Van Der Meulen, E.C., Density-free convergence properties of various estimators of the entropy. *Comput. Statist. Data Anal.* 5 (1987) 425–436.

[16] Györfi, L. and Van Der Meulen, E.C., An entropy estimate based on a Kernel density estimation, Limit Theorems in Probability and Statistics Pécs (Hungary). *Colloquia Mathematica societatis János Bolyai* 57 (1989) 229–240.

[17] Haario, H., Saksman, E. and Tamminen, J., An adaptive metropolis algorithm. *Bernouilli* 7 (2001) 223–242.

[18] Hastings, W.K., Monte Carlo sampling methods using Markov chains and their applications. *Biometrika* 57 (1970) 97–109.

[19] L. Holden, Geometric convergence of the Metropolis-Hastings simulation algorithm. *Statist. Probab. Lett.* **39** (1998).

[20] Ivanov, A.V. and Rozhkova, M.N., Properties of the statistical estimate of the entropy of a random vector with a probability density (in Russian). *Probl. Peredachi Inform.* 17 (1981) 33–43. Translated into English in *Probl. Inf. Transm.* **17** (1981) 171–178.

[21] Jarner, S.F. and Hansen, E., Geometric ergodicity of metropolis algorithms. *Stoc. Proc. Appl.* 85 (2000) 341–361.

[22] Mengersen, K.L. and Tweedie, R.L., Rates of convergence of the Hastings and Metropolis algorithms. *Ann. Statist.* 24 (1996) 101–121.

[23] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., Equations of state calculations by fast computing machines. *J. Chem. Phys.* 21 (1953) 1087–1092.

[24] Mokkadem, A., Estimation of the entropy and information of absolutely continuous random variables. *IEEE Trans. Inf. Theory* 23 (1989) 95–101.

[25] R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2010), ISBN 3-900051-07-0. [26] Roberts, G.O. and Rosenthal, J.S., Optimal scaling for various Metropolis-Hastings algorithms. *Statist. Sci.* 16 (2001) 351–367.

[27] Roberts, G.O. and Tweedie, R.L., Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. *Biometrika* 83 (1996) 95–110.

[28] D. Scott, *Multivariate Density Estimation: Theory, Practice and Visualization*. John Wiley, New York (1992).

[29] Tarasenko, F.P., On the evaluation of an unknown probability density function, the direct estimation of the entropy from independent observations of a continuous random variable and the distribution-free entropy test of goodness-of-fit. *Proc. IEEE* 56 (1968) 2052–2053.