Hostname: page-component-cb9f654ff-mnl9s Total loading time: 0 Render date: 2025-08-31T09:26:21.603Z Has data issue: false hasContentIssue false

Migration of the outermost objects in planetary systems

Published online by Cambridge University Press:  19 April 2010

V. V. Emel'yanenko*
Affiliation:
Department of Computational and Celestial Mechanics, South Ural University, Lenina 76, Chelyabinsk 454080, Russia Institute of Astronomy, Pyatnitskaya 48, Moscow 119017, Russia
Get access

Abstract

The outermost bodies of planetary systems embedded in aplanetesimal disk migrate much faster than the other planets. Theoutward migration of such bodies is self-sustained by supplyingfresh planetesimals up to the edge of the disk. We study thedynamics of gravitational interactions between an outer planet andmassive planetesimals during this process. The investigation isbased on using our N-body symplectic integrator. It is shown thatthe efficiency of the resonant capture of planetesimals during outward planetary migration depends on many parameters of themodel. As a result of planetary migration, planetesimals canbe transferred to a region located far from the planet withoutany resonant trapping. The reversion of the planetary migration isan important element of the process studied. We show that themigration of an Earth-mass planet in the trans-Neptunianplanetesimal disk well reproduces the main orbital features of the“cold” Kuiper belt population.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bernstein, G.M., Trilling, D.E., Allen, R.L., et al., 2004, AJ, 128, 1364 CrossRef
Brown, M.E., 2001, AJ, 121, 2804 CrossRef
Desch, S.J., 2007, ApJ, 671, 878 CrossRef
Emel'yanenko, V.V., 2007, Celest. Mech. Dyn. Astron., 98, 191 CrossRef
Gomes, R.S., Morbidelli, A., & Levison, H.F., 2004, Icarus, 170, 492 CrossRef
Hahn, J.M., & Malhotra, R., 1999, AJ, 117, 3041 CrossRef
Ida, S., Bryden, G., Lin, D.N.C., & Tanaka, H., 2000, ApJ, 534, 428 CrossRef
Kenyon, S.J., & Bromley, B.C., 2004, AJ, 128, 1916 CrossRef
Levison, H.F., Morbidelli, A., Gomes, R., & Backman, D., 2008, in “Protostars and Planets V”, ed. B. Reipurth, D. Jewitt, & K. Keil (University of Arizona Press: Tucson), 669
Levison, H.F., Morbidelli, A., Van Laerhoven, C., Gomes, R., & Tsiganis, K., 2008, Icarus, 196, 258 CrossRef
Malhotra, R., 1995, AJ, 110, 420 CrossRef
Murray, N., Hansen, B., Holman, M., & Tremaine, S., 1998, Science, 279, 69 CrossRef
Murray-Clay, R.A., & Chiang, E.I., 2006, ApJ, 651, 1194 CrossRef
Noll, K.S., Grundy, W.M., Stephens, D.C., Levison, H.F., & Kern, S.D., 2008, Icarus, 194, 758 CrossRef
Stern, S.A., & Colwell, J.E., 1997, AJ, 114, 841 CrossRef
Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H.F., 2005, Nature, 435, 459 CrossRef