Hostname: page-component-cb9f654ff-w5vf4 Total loading time: 0 Render date: 2025-08-02T15:54:18.058Z Has data issue: false hasContentIssue false

A model for far-infrared and millimeter interstellar dust emission

Published online by Cambridge University Press:  26 February 2009

C. Meny
Affiliation:
Centre d'Étude Spatiale des Rayonnements, CNRS, 9 Avenue du Colonel Roche, 31028 Toulouse, France
N. Boudet
Affiliation:
Centre d'Étude Spatiale des Rayonnements, CNRS, 9 Avenue du Colonel Roche, 31028 Toulouse, France
J.-Ph. Bernard
Affiliation:
Centre d'Étude Spatiale des Rayonnements, CNRS, 9 Avenue du Colonel Roche, 31028 Toulouse, France
D. Paradis
Affiliation:
Centre d'Étude Spatiale des Rayonnements, CNRS, 9 Avenue du Colonel Roche, 31028 Toulouse, France
V. Gromov
Affiliation:
Space Research Institute, RAS, 84/32 Profsoyuznaya, 117810 Moscow, Russia
Get access

Abstract

Good knowledge of the far-infrared and millimeter emission fromdust in the interstellar medium is important to get reliableestimates of the dust mass, to trace and understand the evolution ofpre-stellar structures, and to accurately subtract the foregroundemission in the cosmological background anisotropy measurements. Upto now the modeled dust emission profile in FIR and millimeter wavelength range isdeduced from the wings of some mid-infrared fundamentallattice-resonances inside the silicate material, which is known tobe the dominant constituent of this dust component. However recentastronomical observations have shown that the dust emissionprofile could be significantly more complicated than expected. Inaddition, spectroscopic studies in the laboratory on analogues ofamorphous interstellar grains have revealed that additionalprocesses can occur in that spectral range, which are stronglytemperature-dependent. We propose a new model for far-infrared andmillimeter dust emission which takes into account results from thesolid state physics, used to interpret these laboratory data. Thismodel explicitly incorporates the effect of the disorder in theinternal structure of the dust grain. We show that this model cangive a satisfactory interpretation for the astronomicalobservations. It opens new perspectives to derive some new dust characteristics from the shape ofthe dust emission spectrum.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agladze, N.I., et al., 1996, ApJ, 462, 1026 CrossRef
Agladze, N.I., & Sievers, A.J., 1998, Phys. Rev. Lett., 80, 4209 CrossRef
Anderson, P.W., Halperin, B.I., & Varma, C.M., 1972, Phil. Mag., 25, 1 CrossRef
Bernard, J.-P. et al., 1999, A&A, 347, 640
Boudet, N., Mutschke, H., Nayral, C., et al., 2005, ApJ, 633, 272 CrossRef
Chandler, C.J., et al., 1995, ApJ, 455L, 93
Desert, F.-X., Boulanger, F., & Puget, J.L., 1990, ApJ, 237, 215
Draine, B.T., & Anderson, N., 1985, ApJ, 292, 494 CrossRef
Draine, B.T., & Lee, H.M., 1984, ApJ, 285, 89 CrossRef
Draine, B.T., & Li, A., 2001, ApJ, 551, 807 CrossRef
Dupac, X., et al., 2001, ApJ, 553, 604 CrossRef
Dupac, X., et al., 2002, A&A, 392, 691
Dupac, X., del Burgo, C., et al., 2003, MNRAS, 344, 105 CrossRef
Dwek, E., et al., 1997, ApJ, 475, 565 CrossRef
Galliano, F., Madden, S.C., Jones, A.P., et al., 2003, A&A, 407, 159
Galliano, F., Madden, S.C., Jones, A.P., et al., 2005, A&A, 434, 867
Gordon, M.A., 1988, ApJ, 331, 509 CrossRef
Gordon, M.A., 1990, ApJ, 352, 636 CrossRef
Finkbeiner, D.P., Davis, M., & Schlegel, D.J., 1999, ApJ, 524, 867 CrossRef
Fitzgerald, S.A., Sievers, A.J., Campbell, J.A., 2001a, J. Phys. Condens. Matter, 13, 2177 CrossRef
Henning, T., & Mutschke, H., 1997, ApJ, 327, 743
Hubbard, B.E., et al., 2003, Phys. Rev. B, 67, 144201 CrossRef
Jäckle, J., 1972, Z. Physik A, 257, 212 CrossRef
Koike, C., Hasegawa, H., & Manabe, A., 1980, Ap&SS, 67, 495
Li, A., & Greenberg, J.M., 1997, A&A, 323, 566
Lamarre, J.-M., 1994, Infr. Phys. & Techn., 35, 277 CrossRef
Mathis, J.S., Rumpl, W., & Nordsieck, K.H., 1977, ApJ, 217, 425 CrossRef
Mennella, V., et al., 1998, ApJ, 496, 1058 CrossRef
Meny, C., Gromov, V., Boudet, N., et al., 2006, A&A, accepted
Mon, K.K., Chabal, Y.J., & Sievers, A.J., 1975, Phys. Rev. Lett., 35, 1352 CrossRef
Oldham, P., et al., 1994, ApJ, 284, 5590
Pajot, F., 2006, A&A, 447, 769
Phillips, W., 1972, J. Low Temp. Phys., 11, 757 CrossRef
Phillips, W., 1987, Rep. Prog. Phys., 50, 1657 CrossRef
Reach, W.T., Dwek, E., Fixsen, D.J., et al., 1995, ApJ, 451, 188 CrossRef
Ristorcelli, I., et al., 1998, ApJ, 496, 267 CrossRef
Schlömann, E., 1964, Phys. Rev. A, 135, 413 CrossRef
Schwartz, P., 1982, ApJ, 252, 589 CrossRef
Serra, G. et al., 2002, Adv. Space Res. 30, 1297
Strom, U., & Taylor, P.C., 1977, Phys. Rev., 16, 5512 CrossRef
Walker, C., et al., 1990, ApJ, 349, 515 CrossRef
Weiland, J.L., et al., 1986, ApJ, 306, L101 CrossRef
Woody, D., et al., 1989, ApJ, 337, 41 CrossRef
Wright, E., et al., 1992, ApJ, 396, L13 CrossRef