Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-22T09:52:33.399Z Has data issue: false hasContentIssue false

The Stagger-grid: A Grid of 3D Stellar Atmosphere Models

Published online by Cambridge University Press:  19 December 2013

Z. Magic
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany Research School of Astronomy & Astrophysics, Cotter Road, Weston ACT 2611, Australia
R. Collet
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany Research School of Astronomy & Astrophysics, Cotter Road, Weston ACT 2611, Australia
M. Asplund
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany Research School of Astronomy & Astrophysics, Cotter Road, Weston ACT 2611, Australia
Get access

Abstract

Theoretical atmosphere models provide the basis for a variety of applications in astronomy. In simplified one-dimensional (1D) atmosphere models, convection is usually treated with the mixing length theory despite its well-known insufficiency, therefore, the superadiabatic regime is poorly rendered. Due to the increasing computational power over the last decades, we are now capable to compute large grids of realistic three-dimensional (3D) hydrodynamical model atmospheres with the realistic treatment of the radiative transfer. We have computed the Stagger-grid, a comprehensive grid of 3D atmosphere models for late-type stars. In the presented contribution, we discuss initial results of the grid by exploring global properties and mean stratifications of the 3D models. Furthermore, we also depict the differences to classic 1D atmosphere models.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Böhm-Vitense, E., 1958, ZAp, 46, 108
Castelli, F., & Kurucz, R.L., 2004 [arXiv:astro-ph/0405087]
Gustafsson, B., Bell, R.A., Eriksson, K., & Nordlund, A., 1975, A&A, 42, 407PubMed
Gustafsson, B., Edvardsson, B., Eriksson, K., et al., 2008, A&A, 486, 951
Kurucz, R.L., 1979, ApJS, 40, 1CrossRef
Ludwig, H.-G., Freytag, B., & Steffen, M., 1999, A&A, 346, 111PubMed
Magic, Z., Collet, R., Asplund, M., et al., 2013a, A&A, 557, A26
Magic, Z., Collet, R., Hayek, W., & Asplund, M., 2013b [arXiv:1307.3273]
Mihalas, D., Dappen, W., & Hummer, D.G., 1988, ApJ, 331, 815CrossRef
Nordlund, A., 1982, A&A, 107, 1
Nordlund, A., & Dravins, D., 1990, A&A, 228, 155
Nordlund, Å., Stein, R. F., & Asplund, M., 2009, Liv. Rev. Solar Phys., 6, 2
Skartlien, R., 2000, ApJ, 536, 465CrossRef
Stein, R.F., & Nordlund, A., 1998, ApJ, 499, 914CrossRef