Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-5628d Total loading time: 0.217 Render date: 2021-05-10T02:24:44.074Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Application of a generalized finite difference method to mould filling process

Published online by Cambridge University Press:  24 August 2017

E. O. RESÉNDIZ-FLORES
Affiliation:
Division of Postgraduate Studies and Research, Department of Metal-Mechanical Engineering, The Technological Institute of Saltillo, Blvd. V. Carranza 2400 Col. Tecnológico C.P. 25280, Saltillo Coahuila, MX email: eresendiz@itsaltillo.edu.mx
J. KUHNERT
Affiliation:
Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, Fraunhofer-Platz-1, 67663 Kaiserslautern, Germany email: joerg.kuhnert@itwm.fraunhofer.de
F. R. SAUCEDO-ZENDEJO
Affiliation:
Division of Postgraduate Studies and Research, The Technological Institute of Saltillo, Blvd. V. Carranza 2400 Col. Tecnológico C.P. 25280, Saltillo Coahuila, MX email: feliks@live.com.mx

Abstract

This paper proposes the use of a generalized finite difference method for the numerical simulation of free surface single phase flows during mould filling process which are common in some industrial processes particularly in the area of metal casting. A novel and efficient idea for the computation of the normal vectors for free surface flows is introduced and presented for the first time. The incompressible Navier–Stokes equations are numerically solved by the well-known Chorin's projection method. After we showed the main ideas behind the meshless approach, some numerical results in two and three dimensions are presented corresponding to mould filling process simulation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Basic, H., Demirdzic, I. & Muzaferija, S. (2005) Finite volume method for simulation of extrusion processes. Int. J. Numer. Methods Eng. 62 (4), 475494.CrossRefGoogle Scholar
[2] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. & Krysl, P. (1996) Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg. 139 (1–4), 347.CrossRefGoogle Scholar
[3] Buruchenko, S. K. (2016) Three-dimensional simulation of tsunami run up around conical island using smoothed particle hydrodynamics. IOP Conference Series: Earth and Environ. Sci. 44 (3), 032026.Google Scholar
[4] Campbell, J. (2003) Castings. Advanced Materials Research, 2nd ed. Butterworth-Heinemann, Great Britain.Google Scholar
[5] Cleary, P. W., Ha, J. & Ahuja, V. (2000) High pressure die casting simulation using smoothed particle hydrodynamics. Int. J. Cast. Met. Res. 12 (6), 335355.CrossRefGoogle Scholar
[6] Cleary, P. W. & Ha, J. (2000) Three dimensional modelling of high pressure die casting. Int. J. Cast. Met. Res. 12 (6), 357365.CrossRefGoogle Scholar
[7] Cleary, P. W., Ha, J., Prakash, M. & Nguyen, T. (2006) 3D SPH flow predictions and validation for high pressure die casting of automotive components. Appl. Math. Model. 30 (11), 14061427.CrossRefGoogle Scholar
[8] Cleary, P. W., Prakash, M. & Ha, J. (2006) Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J. Mater. Process. Technol. 177 (1–3), 4148.CrossRefGoogle Scholar
[9] Cleary, P. W., Ha, J., Prakash, M. & Nguyen, T. (2010) Short shots and industrial case studies: Understanding fluid flow and solidification in high pressure die casting. Appl. Math. Modelling 34 (8), 20182033.CrossRefGoogle Scholar
[10] Cleary, P. W. (2010) Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting. Appl. Math. Model. 34 (11), 31893201.CrossRefGoogle Scholar
[11] Cleary, P. W., Ha, J., Prakash, M., Sinnott, M. D., Rudman, M. & Das, R. (2011) Large scale simulation of industrial, engineering and geophysical flows using particle methods. Comput. Methods Appl. Sci. 25, 89111.CrossRefGoogle Scholar
[12] Cleary, P. W., Ha, J., Prakash, M., Alguine, V. & Nguyen, T. (2002) Flow modelling in casting processes. Appl. Math. Model. 26 (2), 171190.CrossRefGoogle Scholar
[13] Dhatt, G., Gao, D. M. and Cheikh, A. B. (1990) A finite element simulation of metal flow in moulds. Int. J. Num. Meth. Engrg. 30 (4), 821831.CrossRefGoogle Scholar
[14] Fang, J. & Parriaux, A. (2008) A regularized Lagrangian finite point method for the simulation of incompressible viscous flows. J. Comput. Phys. 227 (20), 88948908.CrossRefGoogle Scholar
[15] Gingold, R. A. & Monaghan, J. J. (1977) Smoothed particle hydrodynamics: Theory and applications to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (3), 375389.CrossRefGoogle Scholar
[16] Hetu, J. F., Gao, D. M., Kabanemi, K. K., Bergeron, S., Nguyen, K. T. & Loong, C. A. (1998) Numerical modeling of casting processes. Adv. Perform. Mate. 5 (1–2), 6582.CrossRefGoogle Scholar
[17] Hirt, C. W. & Nichols, B.D. (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.CrossRefGoogle Scholar
[18] Jefferies, A., Kuhnert, J., Aschenbrenner, L. & Giffhorn, U. (2015) Finite pointset method for the simulation of a vehicle travelling through a body of water. Lecture Notes in Comput. Sci. Eng. 100, 205221.CrossRefGoogle Scholar
[19] Kermanpur, A., Mahmoudi, S. & Hajipour, A. (2008) Numerical simulation of metal flow and solidification in the multi-cavity casting moulds of automotive components. J. Mater. Process. Technol. 206 (1–3), 6268.CrossRefGoogle Scholar
[20] Kopysov, S. P., Tonkov, L. E., Chernova, A. A. & Sarmakeeva, A. S. (2015) Modelling of the incompressible liquid flow interaction with barriers using VOF and SPH methods. J. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki 25 (3), 405420.CrossRefGoogle Scholar
[21] Kuhnert, J. (1999) General smoothed particle hydrodynamics. PhD. Thesis. Technische Universität Kaiserslautern, Germany.Google Scholar
[22] Kuhnert, J. (2003) An upwind finite pointset method (FPM) for compressible euler and navier-stokes equations. Lecture Notes in Comput. Sci. Eng. 26, 239249.CrossRefGoogle Scholar
[23] Kuhnert, J. & Ostermann, I. (2014) The finite pointset method (FPM) and an application in soil mechanics. Lecture Notes in Earth Syst. Sci., 815–818.Google Scholar
[24] Wawreńczuk, A., Kuhnert, J. & Siedow, N. (2007) FPM computations of glass cooling with radiation. Comput. Methods Appl. Mech. Engrg. 196 (45), 46564671.CrossRefGoogle Scholar
[25] Lewis, R. W. & Ravindran, K. (2000) Finite element simulation of metal casting. Int. J. Numer. Methods Eng. 47 (1–3), 2959.3.0.CO;2-X>CrossRefGoogle Scholar
[26] Liu, G. R. (2009) Mesh Free Methods: Moving Beyond the Finite Element Method, 2nd ed., CRC Press, USA.CrossRefGoogle Scholar
[27] Lucy, L. B. (1977) A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 10131024.CrossRefGoogle Scholar
[28] Nguyen, V. P., Rabczuk, T., Bordas, S. & Duflot, M. (2008) Meshless methods: A review and computer implementation aspects. Math. Comput. Simul. 79 (3), 763–813.CrossRefGoogle Scholar
[29] Oñate, E., Idelsohn, S., Zienkiewics, O. & Taylor, R. (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Numer. Methods Eng. 39 (22), 38393866.3.0.CO;2-R>CrossRefGoogle Scholar
[30] Oñate, E., Idelsohn, S., Zienkiewics, O., Taylor, R. & Sacco, S. (1996) A stabilized finite point method for analysis of fluid mechanics problems. Comput. Methdos Appl. Mech. Engrg. 139 (1–4), 315346.CrossRefGoogle Scholar
[31] Parka, J. S., Kimb, S. M., Kimc, M. S. & Lee, W. I. (2005) Finite element analysis of flow and heat transfer with moving free surface using fixed grid system. Int. J. Comput. Fluid. Dyn. 19 (3), 263276.CrossRefGoogle Scholar
[32] Perminov, V. A., Rein, T. S. & Karabtcev, S. N. (2015) NEM and MFEM simulation of interaction between time-dependent waves and obstacles. IOP Conf. Series: Mater. Sci. Eng. 81 (1), 012099.Google Scholar
[33] Ramana, T. V. (1996) Metal Casting: Principles and Practice, 1St ed., New Age International (P) Ltd, India.Google Scholar
[34] Ren, J., Ouyang, J., Jiang, T. & Li, Q. (2011) Simulation of complex filling process based on the generalized Newtonian fuid model using a corrected SPH scheme. Comput. Mech. 49 (5), 643665.CrossRefGoogle Scholar
[35] Schmid, M. & Klein, F. (1995) Fluid flow in die cavities – experimental and numerical simulation. In: NADCA 18. International Die Casting Congress and Exposition, 93–99.Google Scholar
[36] Suchde, P., Kuhnert, J., Schröder, S. & Klar, A. (2017) A flux conserving meshfree method for conservation laws. Int. J. Numer. Methods Eng..Google Scholar
[37] Tiwari, S. & Kuhnert, J. (2001) Grid free method for solving the Poisson equation. Berichte des Fraunhofer ITWM 25.Google Scholar
[38] Tiwari, S. & Kuhnert, J. (2002) Finite pointset method based on the projection method for simulations of the incompressible Navier–Stokes equations. Springer LNCSE: Meshfree methods for Partial Differential Equations 26, 373387.Google Scholar
[39] Tiwari, S. & Kuhnert, J. (2003) Particle method for simulation of free surface flows. In: Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, Heidelberg, 889–898.Google Scholar
[40] Tiwari, S., Antonov, S., Hietel, D., Kuhnert, J., Olawsky, F. & Wegener, R. (2006) A meshfree method for simulations of interactions between fluids and flexible structures. Lecture Notes in Comput. Sci. Eng. 57, 249264.CrossRefGoogle Scholar
[41] Tiwari, S. & Kuhnert, J. (2007) Modeling of two-phase flows with surface tension by finite pointset method (FPM). J. Comput. Appl. Math. 203 (2), 376386.CrossRefGoogle Scholar
[42] Tiwari, S. & Kuhnert, J. (2002) A meshfree method for incompressible fluid flows with incorporated surface tension. Revue Europeenne des Elements 11 (7–8), 965987.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Application of a generalized finite difference method to mould filling process
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Application of a generalized finite difference method to mould filling process
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Application of a generalized finite difference method to mould filling process
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *