Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-zmlw7 Total loading time: 0.194 Render date: 2021-06-13T17:55:38.966Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Applications of Magnus expansions and pseudospectra to Markov processes

Published online by Cambridge University Press:  17 April 2018

A. ISERLES
Affiliation:
Department of Applied Mathematics and Mathematical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK email: a.iserles@damtp.cam.ac.uk
S. MACNAMARA
Affiliation:
Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, Australia email: shev.macnamara@uts.edu.au
Corresponding

Abstract

New directions in Markov processes and research on master equations are showcased by example. The utility of Magnus expansions for handling time-varying rates is demonstrated. The useful notion in applied mathematics often turns out to be the pseudospectra and not simply the eigenvalues. We highlight that general principle with our own examples of Markov processes where exact eigenvalues are found and contrasted with the large errors produced by standard numerical methods. As a motivating application, isomerisation provides a running example and an illustration of our approaches to chemical kinetics. We also present a brief example of a totally asymmetric exclusion process.

Type
Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

†This research and Shev MacNamara have been partially supported by a David G. Crighton Fellowship to DAMTP, Cambridge.

References

[1] Al-Mohy, A. H. & Higham, N. J. (2009) A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 31 (3), 970989.CrossRefGoogle Scholar
[2] Al-Mohy, A. H. & Higham, N. J. (2011) Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comp. 33, 488511.CrossRefGoogle Scholar
[3] Anderson, D. (2012) An efficient finite difference method for parameter sensitivities of continuous time Markov chains. SIAM J. Numer. Anal. 50, 22372258.CrossRefGoogle Scholar
[4] Anderson, D. & Kurtz, T. (2011) Continuous time Markov chain models for chemical reaction networks. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (editors), Design and Analysis of Biomolecular Circuits, New York: Springer.Google Scholar
[5] Barker, J. R., Nguyen, T. L., Stanton, J. F., Aieta, M. C. C., Gabas, F., Kumar, T. J. D., Li, C. G. L., Lohr, L. L., Maranzana, A., Ortiz, N. F., Preses, J. M. & Stimac, P. J. (2016) Multiwell-2016 Software Suite, Technical Report, University of Michigan, Ann Arbor, Michigan, USA.Google Scholar
[6] Bolley, C. & Crouzeix, M. (1978) Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. RAIRO Anal. Numér. 12, 237245.CrossRefGoogle Scholar
[7] Celledoni, E. & Iserles, A. (2001) Methods for the approximation of the matrix exponential in a Lie-algebraic setting. IMA J. Numer. Anal. 21, 463488.CrossRefGoogle Scholar
[8] Corwin, I. (2014) Macdonald processes, quantum integrable systems and the Kardar–Parisi–Zhang universality class. In: Proceedings of the International Congress of Mathematicians.Google Scholar
[9] Corwin, I. (2016) Kardar–Parisi–Zhang Universality. Notices of the American Mathematical Society, March 2016 Not. AMS 63.Google Scholar
[10] Drawert, B., Trogdon, M., Toor, S., Petzold, L. & Hellander, A. (2016) Molns: A cloud platform for interactive, reproducible, and scalable spatial stochastic computational experiments in systems biology using pyurdme. SIAM J. Sci. Comput. 38, C179C202.CrossRefGoogle ScholarPubMed
[11] Edelman, A. & Kostlan, E. (1994) The Road from Kac's Matrix to Kac's Random Polynomials, Technical Report, University of California, Berkeley.Google Scholar
[12] Edelman, A. & Rao, N. R. (2005) Random matrix theory. Acta Numer. 14, 233297.CrossRefGoogle Scholar
[13] Evans, S. N., Sturmfels, B. & Uhler, C. (2010) Commuting birth-and-death processes. Ann. Appl. Probab. 20, 238266.CrossRefGoogle Scholar
[14] Giles, M. & Glasserman, P. (2006) Smoking adjoints: Fast Monte Carlo Greeks. Risk 19 (1), 8892.Google Scholar
[15] Gillespie, D. T. (2002) The chemical Langevin and Fokker–Planck equations for the reversible isomerization reaction. J. Phys. Chem. A 106, 50635071.CrossRefGoogle Scholar
[16] Gorenflo, R., Kilbas, A., Mainardi, F. & Rogosin, S. (2014) Mittag-Leffler Functions, Related Topics and Applications, New York: Springer.CrossRefGoogle Scholar
[17] Gunawardena, J. (2012) A linear framework for time-scale separation in nonlinear biochemical systems. PLoS One 7, e36321.CrossRefGoogle ScholarPubMed
[18] Gunawardena, J. (2014) Time-scale separation: Michaelis and Menten's old idea, still bearing fruit. FEBS J. 281, 473488.CrossRefGoogle ScholarPubMed
[19] Hairer, M. (2014) Singular stochastic PDEs. In: Proceedings of the International Congress of Mathematicians.Google Scholar
[20] Hellander, A., Klosa, J., Lötstedt, P. & MacNamara, S. (2017) Robustness analysis of spatiotemporal models in the presence of extrinsic fluctuations. SIAM J. Appl. Math. 77 (4), 11571183.CrossRefGoogle Scholar
[21] Higham, D. J. (2008) Modeling and simulating chemical reactions. SIAM Rev. 50, 347368.CrossRefGoogle Scholar
[22] Hilfinger, A. & Paulsson, J. (2011) Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proc. Acad. Natl. Sci. 109, 12167–72.CrossRefGoogle Scholar
[23] Hilgers, P. V. & Langville, A. N. (2006) The five greatest applications of Markov chains. In: Proceedings of the Markov Anniversary Meeting, Boston Press, Boston, MA.Google Scholar
[24] Hochbruck, M. & Lubich, C. (2003) On Magnus integrators for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 41, 945963.CrossRefGoogle Scholar
[25] Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P. & Zanna, A. (2000) Lie-group methods. Acta Numer. 9, 215365.CrossRefGoogle Scholar
[26] Jahnke, T. & Huisinga, W. (2007) Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 54, 126. refd By 97.CrossRefGoogle ScholarPubMed
[27] Kac, M. (1957) Probability and Related Topics in Physical Sciences, Summer Seminar in Applied Mathematics, American Mathematical Society, Boulder, Colorado.Google Scholar
[28] Kormann, K. & MacNamara, S. (2016) Error control for exponential integration of the master equation, Technical Report.Google Scholar
[29] Kurtz, T. (1980) Representations of Markov processes as multiparameter time changes. Ann. Probab. 8, 682715.CrossRefGoogle Scholar
[30] Leite, S. C. & Williams, R. J. (2016) A constrained Langevin approximation for chemical reaction networks. Kolmogorov Lecture, 9th World Congress In Probability and Statistics, Toronto, http://www.math.ucsd.edu/williams/biochem/biochem.pdf, (2016).Google Scholar
[31] Macnamara, S. (2015) Cauchy integrals for computational solutions of master equations. ANZIAM J. 56, 3251.CrossRefGoogle Scholar
[32] MacNamara, S., Burrage, K. & Sidje, R. (2008) Multiscale modeling of chemical kinetics via the master equation. SIAM Multiscale Model. Sim. 6, 11461168.CrossRefGoogle Scholar
[33] MacNamara, S., Henry, B. I. & McLean, W. (2016) Fractional Euler limits and their applications. SIAM J. Appl. Math.Google Scholar
[34] MacNamara, S. & Strang, G. (2015) Master equations in ‘Essays on New Directions in Numerical Computation’, http://tobydriscoll.net/newdirections2015/, http://tobydriscoll.net/newdirections2015/LNT60Essays.pdf.Google Scholar
[35] Magnus, W. (1954) On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math. 7, 649673.CrossRefGoogle Scholar
[36] Moler, C. & Loan, C. V. (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 349.CrossRefGoogle Scholar
[37] Munthe-Kaas, H. Z., Quispel, G. R. W. & Zanna, A. (2001) Generalized polar decompositions on Lie groups with involutive automorphisms. Found. Comput. Math. 1, 297324.CrossRefGoogle Scholar
[38] Pavliotis, G. A. & Stuart, A. (2008) Multiscale Methods: Averaging and Homogenization, New York: Springer.Google Scholar
[39] Reddy, S. C. & Trefethen, L. N. (1994) Pseudospectra of the convection-diffusion operator. SIAM J. Appl. Math.Google Scholar
[40] Strang, G. & MacNamara, S. (2014) Functions of difference matrices are Toeplitz plus Hankel. SIAM Rev. 56, 525546.CrossRefGoogle Scholar
[41] Timm, C. (2009) Random transition-rate matrices for the master equation. Phys. Rev. E 80, 021140, New Jersey.CrossRefGoogle ScholarPubMed
[42] Trefethen, L. N. & Chapman, S. J. (2004) Wave packet pseudomodes of twisted Toeplitz matrices. Comm. Pure Appl. Math. 57, 12331264.CrossRefGoogle Scholar
[43] Trefethen, L. N. & Embree, M. (2005) Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press.Google Scholar
[44] Weber, M. F. & Frey, E. (2016) Master equations and the theory of stochastic path integrals, Rep Prog Phys. 2017 Apr; 80 (4):046601. doi: 10.1088/1361-6633/aa5ae2.CrossRefGoogle Scholar
[45] Wei, J. & Norman, E. (1964) On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Amer. Math. Soc. 15, 327334.CrossRefGoogle Scholar
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Applications of Magnus expansions and pseudospectra to Markov processes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Applications of Magnus expansions and pseudospectra to Markov processes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Applications of Magnus expansions and pseudospectra to Markov processes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *