Skip to main content Accessibility help
Hostname: page-component-768dbb666b-7lw58 Total loading time: 0.464 Render date: 2023-02-05T07:13:51.912Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Interpolation of spatial data – A stochastic or a deterministic problem?

Published online by Cambridge University Press:  07 February 2013

Institut für Angewandte Mathematik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 294, D-69120 Heidelberg, Germany email:
Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen, Lotzestr, 16-18, D-37083 Göttingen, Germany email:
Institut für Mathematik, Universität Mannheim, A5, 6, D-68131 Mannheim, Germany email:


Interpolation of spatial data is a very general mathematical problem with various applications. In geostatistics, it is assumed that the underlying structure of the data is a stochastic process which leads to an interpolation procedure known as kriging. This method is mathematically equivalent to kernel interpolation, a method used in numerical analysis for the same problem, but derived under completely different modelling assumptions. In this paper we present the two approaches and discuss their modelling assumptions, notions of optimality and different concepts to quantify the interpolation accuracy. Their relation is much closer than has been appreciated so far, and even results on convergence rates of kernel interpolants can be translated to the geostatistical framework. We sketch different answers obtained in the two fields concerning the issue of kernel misspecification, present some methods for kernel selection and discuss the scope of these methods with a data example from the computer experiments literature.

A Survey in Mathematics for Industry
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1]Anderes, E. (2010) On the consistent separation of scale and variance for Gaussian random fields. Ann. Statist. 38 (2), 870893.CrossRefGoogle Scholar
[2]Anderson, J. L. (1996) A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Clim. 9, 15181530.2.0.CO;2>CrossRefGoogle Scholar
[3]Banerjee, S., Gelfand, A. E., Finley, A. O. & Sang, H. (2008) Gaussian predictive process models for large spatial datasets. J. R. Statist. Soc B 70 (4), 825848.CrossRefGoogle Scholar
[4]Berlinet, A. & Thomas-Agnan, C. (2004) Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Berlin, Germany.CrossRefGoogle Scholar
[5]Caragea, P. & Smith, R. L. (2007) Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models. J. Multivariate Anal. 98 (7), 14171440.CrossRefGoogle Scholar
[6]Carlson, R. E. & Foley, T. A. (1991) The parameter R 2 in multiquadric interpolation. Comp. Math. Appl. 21, 2942.CrossRefGoogle Scholar
[7]Chauvet, P., Pailleux, J. & Chilès, J.-P. (1976) Analyse objective des champs météorologiques par cokrigeage. La Météorologie, 6ième Série 4, 3754.Google Scholar
[8]Chilès, J.-P. (1976) How to adapt kriging to non-classical problems: three case studies. In: Guarascio, M., David, M. & Huijbregts, C. (editors), Advanced Geostatistics in the Mining Industry, D. Reidel, Dordrecht, Holland, pp. 6989.CrossRefGoogle Scholar
[9]Chilès, J.-P. & Delfiner, P. (1999) Geostatistics. Modeling Spatial Uncertainty, John Wiley, New York.Google Scholar
[10]Cressie, N. (1989) Geostatistics. Am. Stat. 43 (4), 197202.Google Scholar
[11]Cressie, N. (1993) Statistics for Spatial Data (rev. ed. edition), Wiley, New York.Google Scholar
[12]Cressie, N. & Johannesson, G. (2008) Fixed rank kriging for very large spatial data sets. J. R. Statist. Soc B 70 (1), 209226.CrossRefGoogle Scholar
[13]Dahlhaus, R. & Künsch, H. R. (1987) Edge effects and efficient parameter estimation for stationary random fields. Biometrika 74 (4), 877882.CrossRefGoogle Scholar
[14]de Marchi, S. (2003) On optimal center locations for radial basis function interpolation: Computational aspects. Rend. Sem. Mat. Torino 61 (3), 343358.Google Scholar
[15]de Marchi, S. & Schaback, R. (2010) Stability of kernel-based interpolation. Adv. Comput. Math. 32, 155161.CrossRefGoogle Scholar
[16]de Marchi, S., Schaback, R. & Wendland, H. (2005) Near-optimal data-independent point locations for radial basis functions. Adv. Comput. Math. 23 (3), 317330.CrossRefGoogle Scholar
[17]Diggle, P. J. & Ribeiro, P. J. (2007) Model-Based Geostatistics, Springer, Berlin, Germany.Google Scholar
[18]Duchon, J. (1976) Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. Adv. RAIRO Anal. Num. 10, 512.Google Scholar
[19]Duchon, J. (1977) Splines minimizing rotation invariant seminorms in Sobolev spaces. In: Schempp, W. & Zeller, K. (editors), Constructive Theory of Functions of Several Variables, Springer-Verlag, Berlin, Germay, pp. 85100.CrossRefGoogle Scholar
[20]Duchon, J. (1978) Sur l'erreur d'interpolation des fonctions de plusieurs variables par les Dm-splines. Adv. RAIRO Anal. Num. 12, 325334.CrossRefGoogle Scholar
[21]Eidsvik, J., Finley, S., Banerjee, S. & Rue, H. (2010) Approximate Bayesian Inference for Large Spatial Datasets using Predictive Process Models. Technical Report 9, Department of Mathematical Sciences, Norwegian University of Science and Technology, Norway.Google Scholar
[22]Evans, L. C. (2002) Partial Differential Equations, American Mathematical Society, Providence, RI.Google Scholar
[23]Fasshauer, G. E. (2007) Meshfree Approximation Methods with Matlab, World Scientific, Singapore.CrossRefGoogle Scholar
[24]Fasshauer, G. E. & Zhang, J. G. (2007) On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45, 345368.CrossRefGoogle Scholar
[25]Foley, T. A. (1987) Interpolation and approximation of 3-D and 4-D scattered data. Comput. Math. Appl. 13, 711740.CrossRefGoogle Scholar
[26]Fornberg, B., Driscoll, T. A., Wright, G. & Charles, R. (2002) Observations on the behaviour of radial basis function approximations near boundaries. Comput. Math. Appl. 43, 473490.CrossRefGoogle Scholar
[27]Fornberg, B. & Wright, G. (2004) Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 47, 497523.Google Scholar
[28]Franke, R. (1982) Scattered data interpolation: Tests of some methods. Math. Comput. 38, 181200.Google Scholar
[29]Fuentes, M. (2008) Approximate likelihood for large irregular spaced spatial data. J. Am. Stat. Assoc. 102 (477), 321331.CrossRefGoogle Scholar
[30]Furrer, R., Genton, M. G. & Nychka, D. (2006) Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Stat. 15 (3), 502523.CrossRefGoogle Scholar
[31]Gneiting, T. & Schlather, M. (2004) Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46 (2), 269282.CrossRefGoogle Scholar
[32]Guyon, X. (1982) Parameter estimation for a stationary process on a d-dimensional lattice. Biometrika 69 (1), 95105.CrossRefGoogle Scholar
[33]Handcock, M. S. & Stein, M. L. (1993) A Bayesian analysis of kriging. Technometrics 35 (4), 403410.CrossRefGoogle Scholar
[34]Handcock, M. S. & Wallis, J. R. (1994) An approach to statistical spatial-temporal modeling of meteorological fields (with discussion). J. Am. Stat. Assoc. 89 (7), 368390.CrossRefGoogle Scholar
[35]Hardy, R. L. (1971) Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 19051915.CrossRefGoogle Scholar
[36]Harville, D. A. (1974) Bayesian inference for variance components using only error contrasts. Biometrika 61, 383385.CrossRefGoogle Scholar
[37]Heyde, C. C. (1997) Quasi-Likelihood and Its Application, Springer, New York.CrossRefGoogle Scholar
[38]Ibragimov, I. A. & Rozanov, Y. A. (1978) Gaussian Random Processes, Aries, A. B. (trans.), Springer, New York.CrossRefGoogle Scholar
[39]Iske, A. (2000) Optimal Distributions of Centers for Radial Basis Function Methods. Technical Report M0004, Technische Universität München, Munich, Germany.Google Scholar
[40]Joseph, V. R., Hung, Y. & Sudjianto, A. (2008) Blind kriging: A new method for developing metamodels. J. Mech. Des. 130 (3), 18.CrossRefGoogle Scholar
[41]Journel, A. G. (1982) The indicator approach to estimation of spatial distributions. In Proceedings of the 17th APCOM International Symposium, New York, pp. 793806.Google Scholar
[42]Kimeldorf, G. S. & Wahba, G. (1970) A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat. 41 (2), 495502.CrossRefGoogle Scholar
[43]Kitanidis, P. K. (1983) Statistical estimation of polynomial generalized covariance functions and hydrologic applications. Water Resour. Res. 19 (4), 909921.CrossRefGoogle Scholar
[44]Kitanidis, P. K. (1997) Introduction to Geostatistics: Applications in Hydrology, Cambridge University Press, New York.CrossRefGoogle Scholar
[45]Lajaunie, C. & Béjaoui, R. (1991) Sur le Krigeage des Fonctions Complexes. Technical Report N-23/91/G, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau.Google Scholar
[46]Lim, S. C. & Teo, L. P. (2010) Analytic and asymptotic properties of multivariate generalized Linniks probability densities. J. Fourier Anal. Appl. 16, 715747.CrossRefGoogle Scholar
[47]Lindgren, F., Rue, H. & Lindström, J. (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc B 73 (4), 423498.CrossRefGoogle Scholar
[48]Madych, W. R. & Nelson, S. A. (1988) Multivariate interpolation and conditionally positive definite functions. Approx. Theory Appl. 4, 7789.Google Scholar
[49]Mardia, K. V. & Marshall, R. J. (1984) Maximum likelihood estimation of models for residual covariance in spatial statistics. Biometrika 71, 135146.CrossRefGoogle Scholar
[50]Matérn, B. (1986) Spatial Variation, 2nd ed., Lecture Notes in Statistics, Vol. 36, Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
[51]Matheron, G. (1971) The Theory of Regionalized Variables and its Applications. Technical Report, Cahiers du Centre de Morphologie Mathḿatique de Fontainebleau, Ecole des Mines de Paris.Google Scholar
[52]Matheron, G. (1973) The intrinsic random functions and their applications. Adv. Appl. Prob. 5, 439468.CrossRefGoogle Scholar
[53]Matheron, G. (1973) Le Krigeage Disjonctive. Technical Report N-360, Centre de Géostatistique, Ecole des Mines de Paris.Google Scholar
[54]Matheron, G. (1976) A simple substitute for conditional expectation: The disjunctive kriging. In: Guarascio, M., David, M. & Huijbregts, C. (editors), Advanced Geostatistics in the Mining Industry, Reidel, Dordrecht, Netherland, pp. 221236.CrossRefGoogle Scholar
[55]Micchelli, C. A. (1986) Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constr. Approx. 2, 1122.CrossRefGoogle Scholar
[56]Morris, M. D., Mitchell, T. J. & Ylvisaker, D. (1993) Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction. Technometrics 35 (3), 243255.CrossRefGoogle Scholar
[57]Myers, D. E. (1992) Kriging, cokriging, radial basis functions and the role of positive definiteness. Comput. Math. Appl. 24 (12), 139148.CrossRefGoogle Scholar
[58]Narcowich, F. J., Ward, J. D. & Wendland, H. (2006) Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx. 24, 175186.CrossRefGoogle Scholar
[59]Omre, H. & Halvorsen, K. B. (1989) The Bayesian bridge between simple and universal kriging. Math. Geol. 21 (7), 767786.CrossRefGoogle Scholar
[60]Putter, H. & Young, G. A. (2001) On the effect of covariance function estimation on the accuracy of kriging predictors. Bernoulli 7 (3), 421438.CrossRefGoogle Scholar
[61]R Development Core Team. (2011) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
[62]Rasmussen, C. E. & Williams, C. K. I. (2006) Gaussian Processes for Machine Learning, MIT Press, Boston, MA.Google Scholar
[63]Rippa, S. (1999) An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11, 193210.CrossRefGoogle Scholar
[64]Ritter, K. (2000) Average-Case Analysis of Numerical Problems, Lecture Notes in Mathematics, No. 1733, Springer, New York.CrossRefGoogle Scholar
[65]Schaback, R. (1993) Comparison of radial basis function interpolants. In: Jetter, K. & Utreras, F. (editors), Multivariate Approximation: From CAGD to Wavelets, World Scientific, London, pp. 293305.CrossRefGoogle Scholar
[66]Schaback, R. (1995) Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251264.CrossRefGoogle Scholar
[67]Schaback, R. (1997) Native Hilbert spaces for radial basis functions I. In: New Developments in Approximation Theory, International Series of Numerical Mathematics, No. 132, Birkhauser Verlag, Berlin, Germany, pp. 255282.Google Scholar
[68]Schaback, R. (2011) The missing Wendland functions. Adv. Comput. Math. 34, 6781.CrossRefGoogle Scholar
[69]Schaback, R. (2011) Kernel-Based Meshless Methods. Technical report, Georg-August-Universität Göttingen, Göttingen, Germany.Google Scholar
[70]Schaback, R. & Wendland, H. (2006) Kernel techniques: From machine learning to meshless methods. Acta Numer. 15, 543639.CrossRefGoogle Scholar
[71]Scheuerer, M. (2010) Regularity of the sample paths of a general second-order random field. Stoch. Proc. Appl. 120, 18791897.CrossRefGoogle Scholar
[72]Scheuerer, M. (2011) An alternative procedure for selecting a good value for the parameter c in RBF-interpolation. Adv. Comput. Math. 34 (1), 105126.CrossRefGoogle Scholar
[73]Schlather, M. (2001) RandomFields: Contributed extension package to R for the simulation of Gaussian and max-stable random fields. URL: Scholar
[74]Seeger, M. (2004) Gaussian processes for machine learning. Int. J. Neural Syst. 14, 138.CrossRefGoogle ScholarPubMed
[75]Stein, M. L. (1988) Asymptotically efficient prediction of a random field with a misspecified covariance function. Ann. Stat. 16, 5563.CrossRefGoogle Scholar
[76]Stein, M. L. (1990) A comparison of generalized cross validation and modified maximum likelihood for estimating the parameters of a stochastic process. Ann. Stat. 18 (3), 11391157.CrossRefGoogle Scholar
[77]Stein, M. L. (1999) Interpolation of Spatial Data, Springer, New York.CrossRefGoogle Scholar
[78]Stein, M. L. (2004) Equivalence of Gaussian measures for some nonstationary random fields. J. Stat. Plann. Inference 123, 111.CrossRefGoogle Scholar
[79]Stein, M. L., Chi, Z. & Welty, L. J. (2004) Approximating likelihoods for large spatial data sets. J. R. Stat. Soc B 66 (2), 275296.CrossRefGoogle Scholar
[80]van der Vaart, A. W. & van Zanten, J. H. (2011) Information rates of nonparametric Gaussian process methods. J. Mach. Learn. Res. 12, 20952119.Google Scholar
[81]Vecchia, A. V. (1988) Estimation and model identification for continuous spatial processes. J. R. Stat. Soc B 50, 297312.Google Scholar
[82]Wahba, G. (1985) A comparison of gcv and gml for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Stat. 13 (1), 13781402.CrossRefGoogle Scholar
[83]Wahba, G. (1990) Spline Models for Observational Data, SIAM, Philadelphia, PA.CrossRefGoogle Scholar
[84]Wendland, H. (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389396.CrossRefGoogle Scholar
[85]Wendland, H. (2005) Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK.Google Scholar
[86]Wendland, H. & Rieger, C. (2005) Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101, 729748.CrossRefGoogle Scholar
[87]Wu, Z. (1992) Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approx. Theory Appl. 8 (2), 110.Google Scholar
[88]Zhang, H. (2004) Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics. J. Am. Stat. Assoc. 99, 250261.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Interpolation of spatial data – A stochastic or a deterministic problem?
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Interpolation of spatial data – A stochastic or a deterministic problem?
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Interpolation of spatial data – A stochastic or a deterministic problem?
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *