Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-rpvk9 Total loading time: 0.23 Render date: 2021-09-28T03:30:18.234Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A meeting point of entropy and bifurcations in cross-diffusion herding

Published online by Cambridge University Press:  15 August 2016

ANSGAR JÜNGEL
Affiliation:
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8–10, 1040 Wien, Austria emails: juengel@tuwien.ac.at, lara.trussardi@tuwien.ac.at
CHRISTIAN KUEHN
Affiliation:
Faculty of Mathematics, Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany email: ckuehn@ma.tum.de
LARA TRUSSARDI
Affiliation:
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8–10, 1040 Wien, Austria emails: juengel@tuwien.ac.at, lara.trussardi@tuwien.ac.at

Abstract

A cross-diffusion system modelling the information herding of individuals is analysed in a bounded domain with no-flux boundary conditions. The variables are the species' density and an influence function which modifies the information state of the individuals. The cross-diffusion term may stabilize or destabilize the system. Furthermore, it allows for a formal gradient-flow or entropy structure. Exploiting this structure, the global-in-time existence of weak solutions and the exponential decay to the constant steady state is proved in certain parameter regimes. This approach does not extend to all parameters. We investigate local bifurcations from homogeneous steady states analytically to determine whether this defines the validity boundary. This analysis shows that generically there is a gap in the parameter regime between the entropy approach validity and the first local bifurcation. Next, we use numerical continuation methods to track the bifurcating non-homogeneous steady states globally and to determine non-trivial stationary solutions related to herding behaviour. In summary, we find that the main boundaries in the parameter regime are given by the first local bifurcation point, the degeneracy of the diffusion matrix and a certain entropy decay validity condition. We study several parameter limits analytically as well as numerically, with a focus on the role of changing a linear damping parameter as well as a parameter controlling the cross-diffusion. We suggest that our paradigm of comparing bifurcation-generated obstructions to the parameter validity of global-functional methods could also be of relevance for many other models beyond the one studied here.

Type
Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

AJ and LT acknowledge partial support from the European Union in the FP7-PEOPLE-2012-ITN Program under Grant Agreement Number 304617, the Austrian Science Fund (FWF), grants P22108, P24304, W1245, and the Austrian-French Program of the Austrian Exchange Service (ÖAD). CK acknowledges partial support by an APART fellowship of the Austrian Academy of Sciences (ÖAW) and by a Marie-Curie International Reintegration Grant by the EU/REA (IRG 271086).

References

[1] Arnold, A., Abdallah, N. B. & Negulescu, C. (1996) Liapunov functionals and large-time-asymptotics of mean-field nonlinear Fokker-Planck equations. Transp. Theory Stat. Phys. 25 (7), 733751.CrossRefGoogle Scholar
[2] Achleitner, F. & Kuehn, C. (2015) On bounded positive stationary solutions for a nonlocal Fisher-KPP equation. Nonl. Anal. A: Theor. Meth. Appl. 112, 1529.CrossRefGoogle Scholar
[3] Amann, H. (1989) Dynamic theory of quasilinear parabolic systems. III. Global existence. Math. Z. 202, 219250.CrossRefGoogle Scholar
[4] Arnold, A., Markowich, P., Toscani, G. & Unterreiter, A. (2001) On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Equ. 26 (1–2), 43100.CrossRefGoogle Scholar
[5] Agranovich, M. S. & Vishik, M. I. (1964) Elliptic problems with a parameter and parabolic problems of general type. Russ. Math. Surv. 19 (3), 53157.CrossRefGoogle Scholar
[6] Bakry, D., Gentil, I. & Ledoux, M. (2014) Analysis and Geometry of Markov Diffusion Operators, Springer.CrossRefGoogle Scholar
[7] Burger, M., Markowich, P. & Pietschmann, J.-F. (2011) Continuous limit of a crowd motion and herding model: Analysis and numerical simulations. Kinet. Relat. Mod. 4, 10251047.Google Scholar
[8] Carrillo, J. A., Jüngel, A., Markowich, P. A., Toscani, G. & Unterreiter, A. (2001) Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatshefte für Math. 133 (1), 182.CrossRefGoogle Scholar
[9] Chertock, A., Kurganov, A., Wang, X. & Wu, Y. (2012) On a chemotaxis model with saturated chemotactic flux. Kinet. Relat. Mod. 5, 5195.CrossRefGoogle Scholar
[10] Crandall, M. G. & Rabinowitz, P. H. (1971) Bifurcation from simple eigenvalues. J. Funct. Anal. 8 (2), 321340.CrossRefGoogle Scholar
[11] Crandall, M. G. & Rabinowitz, P. H. (1973) Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161180.CrossRefGoogle Scholar
[12] Doedel, E. J., Champneys, A., Dercole, F., Fairgrieve, T., Kuznetsov, Y., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X. & Zhang, C. (2007) Auto 2007p: Continuation and bifurcation software for ordinary differential equations (with homcont). URL: http://cmvl.cs.concordia.ca/auto, accessed July 1st, 2016.Google Scholar
[13] Desvillettes, L. & Fellner, K. (2006) Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl. 319 (1), 157176.CrossRefGoogle Scholar
[14] Desvillettes, L. & Fellner, K. (2007) Entropy methods for reaction-diffusion systems. Discrete Cont. Dyn. Sys. (suppl.) 304312.Google Scholar
[15] Dreher, M. & Jüngel, A. (2012) Compact families of piecewise constant functions in L p (0,T;B). Nonlin. Anal. 75, 30723077.CrossRefGoogle Scholar
[16] Delitala, M. & Lorenzo, T. (2014) A mathematical model for value estimation with public information and herding. Kinet. Relat. Mod. 7, 2944.CrossRefGoogle Scholar
[17] Dankowicz, H. & Schilder, F. (2013) Recipes for Continuation. SIAM.CrossRefGoogle Scholar
[18] Evans, L. C. (2002) Partial Differential Equations, AMS.Google Scholar
[19] Fife, P. C. (1973) Semilinear elliptic boundary value problems with small parameters. Arch. Ration. Mech. Anal. 52 (3), 205232.CrossRefGoogle Scholar
[20] Gabriel, P. (2012) Long-time asymptotics for nonlinear growth-fragmentation equations. Commun. Math. Sci. 10, 787820.CrossRefGoogle Scholar
[21] Govaerts, W. F. (1987) Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, Philadelphia, PA.Google Scholar
[22] Galiano, G. & Selgas, V. (2014) On a cross-diffusion segregation problem arising from a model of interacting particles. Nonlin. Anal.: Real World Appl. 18, 3449.CrossRefGoogle Scholar
[23] Henderson, M. E. (2002) Multiple parameter continuation: Computing implicitly defined k-manifolds. Int. J. Bif. Chaos 12 (3), 451476.CrossRefGoogle Scholar
[24] Hittmeir, S. & Jüngel, A. (2011) Cross diffusion preventing blow up in the two-dimensional Keller-Segel model. SIAM J. Math. Anal. 43, 9971022.CrossRefGoogle Scholar
[25] Horstmann, D. (2011) Generalizing the keller-segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlin. Sci. 21, 231270.CrossRefGoogle Scholar
[26] Hillen, T. & Painter, K. (2002) Volume filling and quorum sensing in models for chemosensitive movement. Canad. Appl. Math. Quart. 10, 501543.Google Scholar
[27] Januauskas, A. (1998) Classification of second-order partial differential equation systems elliptic in the petrovskii sense. Lithuanian Math. J. 38, 5963.CrossRefGoogle Scholar
[28] Jüngel, A. (2015) The boundedness-by-emtropy method for cross-diffusion systems. Nonlinearity 28, 19632001.CrossRefGoogle Scholar
[29] Jiang, J. & Zhang, Y. (2009) On convergence to equilibria for a chemotaxis model with volume-filling effect. Asympt. Anal. 65, 79102.Google Scholar
[30] Keller, H. (1977) Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P. (editor), Applications of Bifurcation Theory, Academic Press, pp. 359384.Google Scholar
[31] Kielhoefer, H. (2004) Bifurcation Theory: An Introduction with Applications to PDEs, Springer.CrossRefGoogle Scholar
[32] Krauskopf, B., Osinga, H. M. & Galán-Vique, J. (editors) (2007) Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, Springer.CrossRefGoogle Scholar
[33] Keller, E. & Segel, S. (1970) Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399415.CrossRefGoogle Scholar
[34] Kuehn, C. (2015). Efficient gluing of numerical continuation and a multiple solution method for elliptic PDEs. Applied Mathematics and Computation, 266, 656674.CrossRefGoogle Scholar
[35] Lions, P.-L. (2015) Some new classes of nonlinear Kolmogorov equations. Talk at the 16th Pauli Colloquium, Wolfgang-Pauli Institute.Google Scholar
[36] Liero, M. & Mielke, A. (2013) Gradient structures and geodesic convexity for reaction-diffusion systems. Phil. Trans. Roy. Soc. A 371, 20120346.CrossRefGoogle Scholar
[37] Lambda, H. & Seaman, T. (2008) Market statistics of a psychology-based heterogeneous agent model. Intern. J. Theor. Appl. Finance 11, 717737.CrossRefGoogle Scholar
[38] Ni, W.-M. (1998) Diffusion, cross-diffusion and their spike-layer steady states. Not. Amer. Math. Soc. 45 (1), 918.Google Scholar
[39] Shi, J. & Wang, X. (2009) On the global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246, 27882812.CrossRefGoogle Scholar
[40] Temam, R. (1997) Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer.CrossRefGoogle Scholar
[41] Uhlenbeck, K. (1972) Eigenfunctions of Laplace operators. Bull. Amer. Math. Soc. 78, 10731076.CrossRefGoogle Scholar
[42] Uecker, H., Wetzel, D. & Rademacher, J. D. M. (2014) pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems. Num. Math.: Th. Meth. Appl. 7, 58106.Google Scholar
[43] Wolansky, G. (2002) Multi-components chemotactic system in the absence of conflicts. Europ. J. Appl. Math. 13, 641661.CrossRefGoogle Scholar
[44] Wrzosek, D. (2004) Global attractor for a chemotaxis model with prevention of overcrowding. Nonlin. Anal. 59, 12931310.CrossRefGoogle Scholar
[45] Wang, X. & Xu, Q. (2013) Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem. J. Math. Biol. 66 (6), 12411266.CrossRefGoogle Scholar
[46] Zinsl, J., & Matthes, D. (2015). Transport distances and geodesic convexity for systems of degenerate diffusion equations. Calculus of Variations and Partial Differential Equations, 54 (4), 33973438.CrossRefGoogle Scholar
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A meeting point of entropy and bifurcations in cross-diffusion herding
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A meeting point of entropy and bifurcations in cross-diffusion herding
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A meeting point of entropy and bifurcations in cross-diffusion herding
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *