Skip to main content Accessibility help

Application of a generalized finite difference method to mould filling process



This paper proposes the use of a generalized finite difference method for the numerical simulation of free surface single phase flows during mould filling process which are common in some industrial processes particularly in the area of metal casting. A novel and efficient idea for the computation of the normal vectors for free surface flows is introduced and presented for the first time. The incompressible Navier–Stokes equations are numerically solved by the well-known Chorin's projection method. After we showed the main ideas behind the meshless approach, some numerical results in two and three dimensions are presented corresponding to mould filling process simulation.



Hide All
[1] Basic, H., Demirdzic, I. & Muzaferija, S. (2005) Finite volume method for simulation of extrusion processes. Int. J. Numer. Methods Eng. 62 (4), 475494.
[2] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. & Krysl, P. (1996) Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg. 139 (1–4), 347.
[3] Buruchenko, S. K. (2016) Three-dimensional simulation of tsunami run up around conical island using smoothed particle hydrodynamics. IOP Conference Series: Earth and Environ. Sci. 44 (3), 032026.
[4] Campbell, J. (2003) Castings. Advanced Materials Research, 2nd ed. Butterworth-Heinemann, Great Britain.
[5] Cleary, P. W., Ha, J. & Ahuja, V. (2000) High pressure die casting simulation using smoothed particle hydrodynamics. Int. J. Cast. Met. Res. 12 (6), 335355.
[6] Cleary, P. W. & Ha, J. (2000) Three dimensional modelling of high pressure die casting. Int. J. Cast. Met. Res. 12 (6), 357365.
[7] Cleary, P. W., Ha, J., Prakash, M. & Nguyen, T. (2006) 3D SPH flow predictions and validation for high pressure die casting of automotive components. Appl. Math. Model. 30 (11), 14061427.
[8] Cleary, P. W., Prakash, M. & Ha, J. (2006) Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J. Mater. Process. Technol. 177 (1–3), 4148.
[9] Cleary, P. W., Ha, J., Prakash, M. & Nguyen, T. (2010) Short shots and industrial case studies: Understanding fluid flow and solidification in high pressure die casting. Appl. Math. Modelling 34 (8), 20182033.
[10] Cleary, P. W. (2010) Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting. Appl. Math. Model. 34 (11), 31893201.
[11] Cleary, P. W., Ha, J., Prakash, M., Sinnott, M. D., Rudman, M. & Das, R. (2011) Large scale simulation of industrial, engineering and geophysical flows using particle methods. Comput. Methods Appl. Sci. 25, 89111.
[12] Cleary, P. W., Ha, J., Prakash, M., Alguine, V. & Nguyen, T. (2002) Flow modelling in casting processes. Appl. Math. Model. 26 (2), 171190.
[13] Dhatt, G., Gao, D. M. and Cheikh, A. B. (1990) A finite element simulation of metal flow in moulds. Int. J. Num. Meth. Engrg. 30 (4), 821831.
[14] Fang, J. & Parriaux, A. (2008) A regularized Lagrangian finite point method for the simulation of incompressible viscous flows. J. Comput. Phys. 227 (20), 88948908.
[15] Gingold, R. A. & Monaghan, J. J. (1977) Smoothed particle hydrodynamics: Theory and applications to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (3), 375389.
[16] Hetu, J. F., Gao, D. M., Kabanemi, K. K., Bergeron, S., Nguyen, K. T. & Loong, C. A. (1998) Numerical modeling of casting processes. Adv. Perform. Mate. 5 (1–2), 6582.
[17] Hirt, C. W. & Nichols, B.D. (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.
[18] Jefferies, A., Kuhnert, J., Aschenbrenner, L. & Giffhorn, U. (2015) Finite pointset method for the simulation of a vehicle travelling through a body of water. Lecture Notes in Comput. Sci. Eng. 100, 205221.
[19] Kermanpur, A., Mahmoudi, S. & Hajipour, A. (2008) Numerical simulation of metal flow and solidification in the multi-cavity casting moulds of automotive components. J. Mater. Process. Technol. 206 (1–3), 6268.
[20] Kopysov, S. P., Tonkov, L. E., Chernova, A. A. & Sarmakeeva, A. S. (2015) Modelling of the incompressible liquid flow interaction with barriers using VOF and SPH methods. J. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki 25 (3), 405420.
[21] Kuhnert, J. (1999) General smoothed particle hydrodynamics. PhD. Thesis. Technische Universität Kaiserslautern, Germany.
[22] Kuhnert, J. (2003) An upwind finite pointset method (FPM) for compressible euler and navier-stokes equations. Lecture Notes in Comput. Sci. Eng. 26, 239249.
[23] Kuhnert, J. & Ostermann, I. (2014) The finite pointset method (FPM) and an application in soil mechanics. Lecture Notes in Earth Syst. Sci., 815–818.
[24] Wawreńczuk, A., Kuhnert, J. & Siedow, N. (2007) FPM computations of glass cooling with radiation. Comput. Methods Appl. Mech. Engrg. 196 (45), 46564671.
[25] Lewis, R. W. & Ravindran, K. (2000) Finite element simulation of metal casting. Int. J. Numer. Methods Eng. 47 (1–3), 2959.
[26] Liu, G. R. (2009) Mesh Free Methods: Moving Beyond the Finite Element Method, 2nd ed., CRC Press, USA.
[27] Lucy, L. B. (1977) A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 10131024.
[28] Nguyen, V. P., Rabczuk, T., Bordas, S. & Duflot, M. (2008) Meshless methods: A review and computer implementation aspects. Math. Comput. Simul. 79 (3), 763–813.
[29] Oñate, E., Idelsohn, S., Zienkiewics, O. & Taylor, R. (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Numer. Methods Eng. 39 (22), 38393866.
[30] Oñate, E., Idelsohn, S., Zienkiewics, O., Taylor, R. & Sacco, S. (1996) A stabilized finite point method for analysis of fluid mechanics problems. Comput. Methdos Appl. Mech. Engrg. 139 (1–4), 315346.
[31] Parka, J. S., Kimb, S. M., Kimc, M. S. & Lee, W. I. (2005) Finite element analysis of flow and heat transfer with moving free surface using fixed grid system. Int. J. Comput. Fluid. Dyn. 19 (3), 263276.
[32] Perminov, V. A., Rein, T. S. & Karabtcev, S. N. (2015) NEM and MFEM simulation of interaction between time-dependent waves and obstacles. IOP Conf. Series: Mater. Sci. Eng. 81 (1), 012099.
[33] Ramana, T. V. (1996) Metal Casting: Principles and Practice, 1St ed., New Age International (P) Ltd, India.
[34] Ren, J., Ouyang, J., Jiang, T. & Li, Q. (2011) Simulation of complex filling process based on the generalized Newtonian fuid model using a corrected SPH scheme. Comput. Mech. 49 (5), 643665.
[35] Schmid, M. & Klein, F. (1995) Fluid flow in die cavities – experimental and numerical simulation. In: NADCA 18. International Die Casting Congress and Exposition, 93–99.
[36] Suchde, P., Kuhnert, J., Schröder, S. & Klar, A. (2017) A flux conserving meshfree method for conservation laws. Int. J. Numer. Methods Eng..
[37] Tiwari, S. & Kuhnert, J. (2001) Grid free method for solving the Poisson equation. Berichte des Fraunhofer ITWM 25.
[38] Tiwari, S. & Kuhnert, J. (2002) Finite pointset method based on the projection method for simulations of the incompressible Navier–Stokes equations. Springer LNCSE: Meshfree methods for Partial Differential Equations 26, 373387.
[39] Tiwari, S. & Kuhnert, J. (2003) Particle method for simulation of free surface flows. In: Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, Heidelberg, 889–898.
[40] Tiwari, S., Antonov, S., Hietel, D., Kuhnert, J., Olawsky, F. & Wegener, R. (2006) A meshfree method for simulations of interactions between fluids and flexible structures. Lecture Notes in Comput. Sci. Eng. 57, 249264.
[41] Tiwari, S. & Kuhnert, J. (2007) Modeling of two-phase flows with surface tension by finite pointset method (FPM). J. Comput. Appl. Math. 203 (2), 376386.
[42] Tiwari, S. & Kuhnert, J. (2002) A meshfree method for incompressible fluid flows with incorporated surface tension. Revue Europeenne des Elements 11 (7–8), 965987.


Application of a generalized finite difference method to mould filling process



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed