Skip to main content Accesibility Help
×
×
Home

Applications of Magnus expansions and pseudospectra to Markov processes

  • A. ISERLES (a1) and S. MACNAMARA (a2)
Abstract

New directions in Markov processes and research on master equations are showcased by example. The utility of Magnus expansions for handling time-varying rates is demonstrated. The useful notion in applied mathematics often turns out to be the pseudospectra and not simply the eigenvalues. We highlight that general principle with our own examples of Markov processes where exact eigenvalues are found and contrasted with the large errors produced by standard numerical methods. As a motivating application, isomerisation provides a running example and an illustration of our approaches to chemical kinetics. We also present a brief example of a totally asymmetric exclusion process.

Copyright
Footnotes
Hide All

†This research and Shev MacNamara have been partially supported by a David G. Crighton Fellowship to DAMTP, Cambridge.

Footnotes
References
Hide All
[1] Al-Mohy, A. H. & Higham, N. J. (2009) A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 31 (3), 970989.
[2] Al-Mohy, A. H. & Higham, N. J. (2011) Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comp. 33, 488511.
[3] Anderson, D. (2012) An efficient finite difference method for parameter sensitivities of continuous time Markov chains. SIAM J. Numer. Anal. 50, 22372258.
[4] Anderson, D. & Kurtz, T. (2011) Continuous time Markov chain models for chemical reaction networks. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (editors), Design and Analysis of Biomolecular Circuits, New York: Springer.
[5] Barker, J. R., Nguyen, T. L., Stanton, J. F., Aieta, M. C. C., Gabas, F., Kumar, T. J. D., Li, C. G. L., Lohr, L. L., Maranzana, A., Ortiz, N. F., Preses, J. M. & Stimac, P. J. (2016) Multiwell-2016 Software Suite, Technical Report, University of Michigan, Ann Arbor, Michigan, USA.
[6] Bolley, C. & Crouzeix, M. (1978) Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. RAIRO Anal. Numér. 12, 237245.
[7] Celledoni, E. & Iserles, A. (2001) Methods for the approximation of the matrix exponential in a Lie-algebraic setting. IMA J. Numer. Anal. 21, 463488.
[8] Corwin, I. (2014) Macdonald processes, quantum integrable systems and the Kardar–Parisi–Zhang universality class. In: Proceedings of the International Congress of Mathematicians.
[9] Corwin, I. (2016) Kardar–Parisi–Zhang Universality. Notices of the American Mathematical Society, March 2016 Not. AMS 63.
[10] Drawert, B., Trogdon, M., Toor, S., Petzold, L. & Hellander, A. (2016) Molns: A cloud platform for interactive, reproducible, and scalable spatial stochastic computational experiments in systems biology using pyurdme. SIAM J. Sci. Comput. 38, C179C202.
[11] Edelman, A. & Kostlan, E. (1994) The Road from Kac's Matrix to Kac's Random Polynomials, Technical Report, University of California, Berkeley.
[12] Edelman, A. & Rao, N. R. (2005) Random matrix theory. Acta Numer. 14, 233297.
[13] Evans, S. N., Sturmfels, B. & Uhler, C. (2010) Commuting birth-and-death processes. Ann. Appl. Probab. 20, 238266.
[14] Giles, M. & Glasserman, P. (2006) Smoking adjoints: Fast Monte Carlo Greeks. Risk 19 (1), 8892.
[15] Gillespie, D. T. (2002) The chemical Langevin and Fokker–Planck equations for the reversible isomerization reaction. J. Phys. Chem. A 106, 50635071.
[16] Gorenflo, R., Kilbas, A., Mainardi, F. & Rogosin, S. (2014) Mittag-Leffler Functions, Related Topics and Applications, New York: Springer.
[17] Gunawardena, J. (2012) A linear framework for time-scale separation in nonlinear biochemical systems. PLoS One 7, e36321.
[18] Gunawardena, J. (2014) Time-scale separation: Michaelis and Menten's old idea, still bearing fruit. FEBS J. 281, 473488.
[19] Hairer, M. (2014) Singular stochastic PDEs. In: Proceedings of the International Congress of Mathematicians.
[20] Hellander, A., Klosa, J., Lötstedt, P. & MacNamara, S. (2017) Robustness analysis of spatiotemporal models in the presence of extrinsic fluctuations. SIAM J. Appl. Math. 77 (4), 11571183.
[21] Higham, D. J. (2008) Modeling and simulating chemical reactions. SIAM Rev. 50, 347368.
[22] Hilfinger, A. & Paulsson, J. (2011) Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proc. Acad. Natl. Sci. 109, 12167–72.
[23] Hilgers, P. V. & Langville, A. N. (2006) The five greatest applications of Markov chains. In: Proceedings of the Markov Anniversary Meeting, Boston Press, Boston, MA.
[24] Hochbruck, M. & Lubich, C. (2003) On Magnus integrators for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 41, 945963.
[25] Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P. & Zanna, A. (2000) Lie-group methods. Acta Numer. 9, 215365.
[26] Jahnke, T. & Huisinga, W. (2007) Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 54, 126. cited By 97.
[27] Kac, M. (1957) Probability and Related Topics in Physical Sciences, Summer Seminar in Applied Mathematics, American Mathematical Society, Boulder, Colorado.
[28] Kormann, K. & MacNamara, S. (2016) Error control for exponential integration of the master equation, Technical Report.
[29] Kurtz, T. (1980) Representations of Markov processes as multiparameter time changes. Ann. Probab. 8, 682715.
[30] Leite, S. C. & Williams, R. J. (2016) A constrained Langevin approximation for chemical reaction networks. Kolmogorov Lecture, 9th World Congress In Probability and Statistics, Toronto, http://www.math.ucsd.edu/williams/biochem/biochem.pdf, (2016).
[31] Macnamara, S. (2015) Cauchy integrals for computational solutions of master equations. ANZIAM J. 56, 3251.
[32] MacNamara, S., Burrage, K. & Sidje, R. (2008) Multiscale modeling of chemical kinetics via the master equation. SIAM Multiscale Model. Sim. 6, 11461168.
[33] MacNamara, S., Henry, B. I. & McLean, W. (2016) Fractional Euler limits and their applications. SIAM J. Appl. Math.
[34] MacNamara, S. & Strang, G. (2015) Master equations in ‘Essays on New Directions in Numerical Computation’, http://tobydriscoll.net/newdirections2015/, http://tobydriscoll.net/newdirections2015/LNT60Essays.pdf.
[35] Magnus, W. (1954) On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math. 7, 649673.
[36] Moler, C. & Loan, C. V. (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 349.
[37] Munthe-Kaas, H. Z., Quispel, G. R. W. & Zanna, A. (2001) Generalized polar decompositions on Lie groups with involutive automorphisms. Found. Comput. Math. 1, 297324.
[38] Pavliotis, G. A. & Stuart, A. (2008) Multiscale Methods: Averaging and Homogenization, New York: Springer.
[39] Reddy, S. C. & Trefethen, L. N. (1994) Pseudospectra of the convection-diffusion operator. SIAM J. Appl. Math.
[40] Strang, G. & MacNamara, S. (2014) Functions of difference matrices are Toeplitz plus Hankel. SIAM Rev. 56, 525546.
[41] Timm, C. (2009) Random transition-rate matrices for the master equation. Phys. Rev. E 80, 021140, New Jersey.
[42] Trefethen, L. N. & Chapman, S. J. (2004) Wave packet pseudomodes of twisted Toeplitz matrices. Comm. Pure Appl. Math. 57, 12331264.
[43] Trefethen, L. N. & Embree, M. (2005) Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press.
[44] Weber, M. F. & Frey, E. (2016) Master equations and the theory of stochastic path integrals, Rep Prog Phys. 2017 Apr; 80 (4):046601. doi: 10.1088/1361-6633/aa5ae2.
[45] Wei, J. & Norman, E. (1964) On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Amer. Math. Soc. 15, 327334.
[46] Wright, T. G. (2002) Eigtool, http://www.comlab.ox.ac.uk/pseudospectra/eigtool/,2002.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed