Skip to main content

Asymptotic models for transport in large aspect ratio nanopores

  • B. MATEJCZYK (a1), J.-F. PIETSCHMANN (a2), M.-T. WOLFRAM (a3) and G. RICHARDSON (a4)

Ion flow in charged nanopores is strongly influenced by the ratio of the Debye length to the pore radius. We investigate the asymptotic behaviour of solutions to the Poisson–Nernst–Planck (PNP) system in narrow pore like geometries and study the influence of the pore geometry and surface charge on ion transport. The physical properties of real pores motivate the investigation of distinguished asymptotic limits, in which either the Debye length and pore radius are comparable or the pore length is very much greater than its radius This results in a quasi-one-dimensional (1D) PNP model, which can be further simplified, in the physically relevant limit of strong pore wall surface charge, to a fully 1D model. Favourable comparison is made to the two-dimensional (2D) PNP equations in typical pore geometries. It is also shown that, for physically realistic parameters, the standard 1D area averaged PNP model for ion flow through a pore is a very poor approximation to the (real) 2D solution to the PNP equations. This leads us to propose that the quasi-1D PNP model derived here, whose computational cost is significantly less than 2D solution of the PNP equations, should replace the use of the 1D area averaged PNP equations as a tool to investigate ion and current flows in ion pores.

Hide All
[1] Andelman, D. (1995) Electrostatic properties of membranes: The Poisson–Boltzmann theory. Handb. of Biol. Phys. 1, 603642.
[2] Ball, F., Milne, R. K. & Yeo, G. F. (2002) Multivariate semi-Markov analysis of burst properties of multiconductance single ion channels. J. of Appl. Probab. 39 (1), 179196.
[3] Burger, M., Schlake, B. A. & Wolfram, M.-T. (2012) Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries. Nonlinearity 25 (4), 961.
[4] Cervera, J., Schiedt, B., Neumann, R., Mafe, S. & Ramirez, P. (2006) Ionic conduction, rectification, and selectivity in single conical nanopores. J. Chem. Phys. 124 (10), 104706.
[5] Cervera, J., Schiedt, B. & Ramírez, P. (2005) A Nernst–Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett. 71 (1), 3541.
[6] Chapman, S. J., Norbury, J., Please, C. & Richardson, G. (2005) Ions in solutions and protein channels. In: Proceedings of the 5th Mathematics in Medicine Study Group, University of Oxford.
[7] Chen, W., Erban, R. & Chapman, S. J. (2014) From Brownian dynamics to Markov chain: An ion channel example. SIAM J. Appl. Math. 74 (1), 208235.
[8] Constantin, D. & Siwy, Z. S. (2007) Poisson–Nernst–Planck model of ion current rectification through a nanofluidic diode. Phys. Rev. E 76, 041202.
[9] Corry, B., Kuyucak, S. & Chung, S.-H. (2000) Tests of continuum theories as models of ion channels. II. Poisson–Nernst–Planck theory versus Brownian dynamics. Biophys. J. 78 (5), 23642381.
[10] Courtier, N., Foster, J., O'Kane, S., Walker, A., & Richardson, G. (2018). Systematic derivation of a surface polarisation model for planar perovskite solar cells. Eur. J. Appl. Math. 131. doi:10.1017/S0956792518000207
[11] Dreyer, W., Guhlke, C. & Muller, R. (2013) Overcoming the shortcomings of the Nernst–Planck model. Phys. Chem. Chem. Phys. 15, 70757086.
[12] Foster, J. M., Kirkpatrick, J. & Richardson, G. (2013) Asymptotic and numerical prediction of current–voltage curves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit. J. Appl. Phys. 114 (10), 104501.
[13] Foster, J. M., Snaith, H. J., Leijtens, T. & Richardson, G. (2014) A model for the operation of perovskite based hybrid solar cells: Formulation, analysis, and comparison to experiment. SIAM J. Appl. Math. 74 (6), 19351966.
[14] George, S., Foster, J. M. & Richardson, G. (2015) Modelling in vivo action potential propagation along a giant axon. J. Math. Biol. 70 (1–2), 237263.
[15] Gillespie, D., Nonner, W. & Eisenberg, R. S. (2002) Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. J. Phys.: Condens. Matter 14 (46), 12129.
[16] Gummel, H. K. (1964) A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron. Devices 11 (10), 455465.
[17] Hollerbach, U., Chen, D.-P. & Eisenberg, R. S. (2001) Two- and three-dimensional Poisson–Nernst–Planck simulations of current flow through Gramicidin A. J. Sci. Comput. 16 (4), 373409.
[18] Horng, T.-L., Lin, T.-C., Liu, C. & Eisenberg, R. S. (2012) PNP equations with steric effects: A model of ion flow through channels. J. Phys. Chem. B 116 (37), 1142211441.
[19] Lai, W. & Ciucci, F. (2011) Mathematical modeling of porous battery electrodes: Revisit of Newman's model. Electrochim. Acta 56 (11), 43694377.
[20] Markowich, P. A. (1985) The Stationary Semiconductor Device Equations, Springer Vienna, Vol. 1, Springer Science & Business Media.
[21] Markowich, P. A., Ringhofer, C. A. & Schmeiser, C. (1986) An asymptotic analysis of one-dimensional models of semiconductor devices. IMA J. Appl. Math. 37 (1), 124.
[22] Markowich, P. A., Ringhofer, C. A. & Schmeiser, C. (1990) Semiconductor Equations, Springer-Verlag, New York.
[23] Markowich, P. A. & Schmeiser, C. (1986) Uniform asymptotic representation of solutions of the basic semiconductor-device equations. IMA J. Appl. Math. 36 (1), 4357.
[24] Matejczyk, B., Valiskó, M., Wolfram, M.-T., Pietschmann, J.-F. & Boda, D. (2017) Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson–Nernst–Planck to Monte Carlo. J. Chem Phys. 146 (12), 124125.
[25] Newman, J. & Thomas-Alyea, K. E. (2012) Electrochemical Systems, John Wiley & Sons.
[26] Pietschmann, J.-F., Wolfram, M.-T., Burger, M., Trautmann, C., Nguyen, G., Pevarnik, M., Bayer, V. & Siwy, Z. (2013) Rectification properties of conically shaped nanopores: Consequences of miniaturization. Phys. Chem. Chem. Phys. 15, 1691716926.
[27] Richardson, G. (2009) A multiscale approach to modelling electrochemical processes occurring across the cell membrane with application to transmission of action potentials. Math. Med. Biol. 26 (3), 201224.
[28] Richardson, G., Denuault, G. & Please, C. P. (2012) Multiscale modelling and analysis of lithium-ion battery charge and discharge. J. Eng. Math. 72 (1), 4172.
[29] Richardson, G., O'Kane, S. E. J., Niemann, R. G., Peltola, T. A., Foster, J. M., Cameron, P. J. & Walker, A. B. (2016) Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy & Environ. Sci. 9 (4), 14761485.
[30] Richardson, G., Please, C., Foster, J. & Kirkpatrick, J. (2012) Asymptotic solution of a model for bilayer organic diodes and solar cells. SIAM J. Appl. Math. 72 (6), 17921817.
[31] Richardson, G., Please, C. P. & Styles, V. (2017) Derivation and solution of effective medium equations for bulk heterojunction organic solar cells. Eur. J. Appl. Math. 28 (6), 9731014.
[32] Schneider, G. F. & Dekker, C. (2013) DNA sequencing with nanopores. Nat. Biotech. 30, 326328.
[33] Schöberl, J. (1997) NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1 (1), 4152.
[34] Singer, A., Gillespie, D., Norbury, J. & Eisenberg, R. S. (2008) Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels. Eur. J. Appl. Math. 19 (5), 541560.
[35] Singer, A. & Norbury, J. (2009) A Poisson–Nernst–Planck model for biological ion channels: An asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70 (3), 949968.
[36] Siwy, Z., Apel, P., Baur, D., Dobrev, D. D., Korchev, Y. E., Neumann, R., Spohr, R., Trautmann, C. & Voss, K. O. (2003) Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf. Sci. 532, 10611066.
[37] Vlassiouk, I., Smirnov, S. & Siwy, Z. (2008) Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. ACS Nano 2 (8), 15891602.
[38] Yang, Z., Van, T. A., Straaten, D., Ravaioli, U. & Liu, Y. (2005) A coupled 3-D PNP/ECP model for ion transport in biological ion channels. J. Comput. Electron. 4 (1), 167170.
[39] Zheng, Q. & Wei, G.-W. (2011) Poisson–Boltzmann–Nernst–Planck model. J. Chem. Phys. 134 (19), 194101.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 82 *
Loading metrics...

* Views captured on Cambridge Core between 6th June 2018 - 17th July 2018. This data will be updated every 24 hours.