Skip to main content
×
×
Home

A brief history of the analysis of crime concentration

  • SHANE D. JOHNSON (a1)
Abstract

Decades of research demonstrate that crime is concentrated at a range of spatial scales. Such findings have clear implications for crime forecasting and police resource allocation models. More recent work has also shown that crime clusters in space and time with a regularity that might improve methods of crime prediction. In this paper I review some of the available evidence and provide illustrations of the types of analysis – spatial and spatio-temporal – conducted hitherto. With a few exceptions, the application of formal Mathematics in the study of space–time patterns of crime has been rather limited, and so a central aim of the paper is to stimulate interest in this area of research.

Copyright
References
Hide All
Agnew, R. (1985) A revised strain theory of delinquency. Soc. Forces 64, 151167.
Beavon, D. J., Brantingham, P. & Brantingham, P. (1994) The influence of street networks on the patterning of property offenses. In: Clarke, R. (editor), Crime Prevention Studies Vol II, Willow Tree Press, New York.
Bernasco, W. (2008) Them again? Same offender involvement in repeat and near repeat burglaries. Eur. J. Criminol. 5, 411431.
Besag, J. & Diggle, P. (1977) Simple Monte Carlo tests for spatial pattern. Appl. Stat. 26, 327333.
Bowers, K. J. & Johnson, S. D. (2005) Domestic burglary repeats and space-time clusters: The dimensions of risk. Eur. J. Criminol. 105, 6792.
Bowers, K. J., Johnson, S. D. & Pease, K. (2004) Prospective hot-spotting: The future of crime mapping? Br. J. Criminol. 105, 641658.
Braga, A. & Bond, B. (2008). Policing crime and disorder hot spots: A randomized controlled trial. Criminology 46, 577607.
Brantingham, P. & Brantingham, P. (1981) Environmental Criminology, Sage, Beverly Hills.
Brantingham, P. & Brantingham, P. (1993a) Environment, routine and situation: Toward a pattern theory of crime. In Clarke, R. V. & Felson, M. (editors), Routine Activity and Rational Choice, Transaction Publishers, New Brunswick, pp. 259294.
Brantingham, P. & Brantingham, P. (1993b) Nodes, paths and edges: Considerations on the complexity of crime and the physical environment. J. Environ. Psychol. 13, 328.
Brantingham, P. & Brantingham, P. (1995) Criminality of place: Crime generetors and crime attractors. Eur. J. Criminal Policy Res. 105, 526.
Chainey, S. & Ratcliffe, J. H. (2005) GIS and Crime Mapping, Wiley, London.
Cohen, L. & Felson, M. (1979) Social change and crime rate trends: A routine activity approach. Am. Sociol. Rev. 105, 588608.
Cornish, D. (1994) The procedural analysis of offending and its relevance for situational prevention. Crime Prevention Studies Volume 3, Criminal Justice Press, New York.
Cornish, D. & Clarke, R. V. (1986) The Reasoning Criminal: Rational Choice Perspectives on Offending, Springer-Verlag, New York.
Farrell, G. (2005) Progress and prospects in the prevention of repeat victimization. In: Tilley, N. (editor), Handbook of Crime Prevention and Community Safety, Willan, Cullompton, pp. 145172.
Farrell, G. & Pease, K. (1994) Crime seasonality: Domestic disputes and residential burglary in Merseyside 1988–90. Br. J. Criminol. 34, 487498.
Farrell, G., Tilley, N., Tseloni, M. & Mailley, J. (2008) The crime drop and the security hypothesis. Br. Soc. Criminol. Newslett. 62, 1721.
Getis, A. (1964) Temporal land-use pattern analysis with the use of nearest neighbour and quadrate methods. Ann. Assoc. Am. Geogr. 54 (3), 391399.
Groff, E., Weisburd, D. & Morris, A. (2008) Where the action is at places: Examining spatio-temporal patterns of juvenile crime at places using trajectory analysis. In: Weisburd, D., Bernasco, W. & , B. G. J (editors), Putting Crime in its Place, Springer, New York.
Hillier, B. (2004) Can streets be made safe? Urban Des. Int. 9, 3145.
Hird, C. A. (2007) Seasonaility in recorded crime: Preliminary findings, Home Office, London.
Jeffrey, C. R. (1971) Crime Prevention Through Environmental Design, Sage, Beverly Hills.
Johnson, S. D. (2008) Repeat burglary victimization: A tale of two theories. J. Exp. Criminol. 4, 215240.
Johnson, S. D. (2009) Potential uses of computational methods in th evaluation of crime reduction activity. In: Knuttson, J. & Tilley, N. (editors), Crime Prevention Studies vol 24, Willan, Cullompton.
Johnson, S. D., Bernasco, W., Bowers, K. J., Elffers, H., Ratcliffe, J., Rengert, G., et al. (2007a) Near repeats: A cross national assessment of residential burglary. J. Quant. Criminol. 105, 201219.
Johnson, S. D., Birks, D. J., McLaughlin, L., Bowers, K. J. & Pease, K. (2007b) Prospective Mapping in Operational Context. Home Office, London.
Johnson, S. D. & Bowers, K. J. (2004a) The burglary as clue to the future: The beginnings of prospective hot-spotting. Eur. J. Criminol. 105, 237255.
Johnson, S. D. & Bowers, K. J. (2004b) The stability of space-time clusters of burglary. Br. J. Criminol. 105, 5565.
Johnson, S. D. & Bowers, K. J. (2007) Burglary prediction: The roles of theory flow and friction. In: Farrell, G., Bowers, K. J., Johnson, S. D. & Townsley, M. (editors), Imagination for Crime Prevention: Essays in Honour of Ken Pease, Willan, Cullompton.
Johnson, S. D. & Bowers, K. J. (2010) Permeability and Burglary Risk: Are Cul-de-sacs safer? J. Quant. Criminol., in press
Johnson, S. D., Bowers, K. J., Birks, D. & Pease, K. (2008a) Predictive mapping of crime by ProMap: Accuracy, units of analysis and the environmental backcloth. In: Weisburd, D., Bernasco, W. & Bruinsma, G. (editors), Putting Crime in its Place: Units of Analysis in Spatial Crime Research. Springer, New York.
Johnson, S. D., Bowers, K. J. & Hirschfield, A. F. (1997) New insights in to the spatial and temporal distribution of repeat victimization. Br. J. Criminol. 37, 224241.
Johnson, S. D. & Braithwaite, A. (2009) Spatio-Temporal Modelling of Insurgency in Iraq. In: Freilich, J. D. & Newman, G. R. (editors), Reducing Terrorism Through Situational Crime Prevention. Willan, Cullompton.
Johnson, S. D., Lab, S. & Bowers, K. J. (2008b) Stable and fluid hotspots of crime: Differentiation and identification. Built Environ. 34, 3245.
Johnson, S. D., Summers, L., & Pease, K. (2006) Vehicle Crime: Communicating Spatial and Temporal Patterns, Home Office Report, March 2006.
Johnson, S. D., Summers, L. & Pease, K. (2009) Offenders as forager: A direct test of the boost account of victimization. J. Quant. Criminol. 25, 181200.
Kleemans, E. R. (2001) Repeat burglary victimization: Results of empirical research in the Netherlands. In: Farrell, G. A. (editor), Crime Prevention Studies 12, Willan, Cullompton, pp. 5368.
Knox, G. (1964) Epidemiology of childhood Leukaemia in Northumberland and Durham. Br. J. Preventitive Soc. Med. 105, 1724.
Merton, R. (1938) Social structure and anomie. Am. Sociol. Rev. 3, 672682.
Mitchell, H. & Babb, P. (2007) Crimes Detected in England and Wales 2006/07. Home Office Statistical Bulletin 15/07. Home Office, London.
Mohler, G., Short, M. B., Brantingham, P. J., Schoenberg, F. P. & Tita, G. (2010) Self-exciting point processes explain spatial-temporal patterns in crime. Submitted for Review, accessed 17 February from, URL: http://www.math.ucla.edu/~mbshort/papers/crime3.pdf.
Monmonier, M. (1996) How to Lie With Maps. University of Chicago Press, Chicago.
Moran, P. (1950) Notes on continuous stochastic phenomena. Biometrika 37, 1733.
Morgan, F. (2001) Repeat burglary in a Perth suburb: Indicator of short-term or long-term risk? In: Pease, G. F. (editor), Repeat Victimization: Crime Prevention Studies volume 12, Criminal Justice Press, Monsey NY.
Nicholas, S., Kershaw, C. & Walker, A. (2007) Home Office Statistical Bulletin: Crime in England and Wales 2006/07, Home Office, London.
North, B. V., Curtis, D. & Sham, P. C. (2002) A note on the calculation of empirical p values fom Monte Carlo procedures. Am. J. Hum. Gen. 71, 439441.
Openshaw, S. (1984) The Modifiable Areal Unit Problem, Geo Books, Norwich.
Pease, K. (1998) Repeat Victimization: Taking Stock. Home Office Police Research Group, Crime Detection and Prevention Series, Paper 90, Home Office, London.
Pitcher, A. B. (2010) Adding police to a mathematical model of burglary. Eur. J. Appl. Math. 21, 401419.
Polvi, N., Looman, T., Humphries, C. & Pease, K. (1991) The time course of repeat burglary victimisation. Br. J. Criminol. 31, 411414.
Pyke, G. (1984) Optimal foraging theory: A critical review. Annu. Rev. Ecol. Syst. 15, 523575.
Ratcliffe, J. (2002) Aoristic signatures and the temporal analysis of high volume crime patterns. J. Quant. Criminol. 18, 2343.
Ratcliffe, J. (2004) The hotspot matrix: A framework for the spatio-temporal targeting of crime reduction. Police Pract. Res. 5, 523.
Ratcliffe, J. H. & Rengert, G. (2008) Near-repeat patterns in Philadelphia shootings. Security J. 21, 5876.
Robinson, W. (1950) Ecological correlations and the behavior of individuals. Am. Sociol. Rev. 15, 351357.
Sagovsky, A. & Johnson, S. D. (2007) When does repeat victimisation occur? Aust. New Zealand J. Criminol. 40, 126.
Sampson, R. J. & Raudenbush, S. W. (1999) Systematic observation of public spaces: A new look at disorder in urban neighbourhoods. Am. J. Sociol. 105, 603651.
Shaw, C. & McKay, H. (1969) Juvenile Delinquency and Urban Areas, University of Chicago Press, Chicago.
Sherman, L., Gartin, P. & Buerger, M. (1989) Hot spots of predatory crime: Routine activities and the criminology of place. Criminology 27, 2755.
Sherman, L. W. & Weisburd, D. (1995) General deterrent effects of police patrol in crime “hot spots”: A randomized controlled trial. Justice Q. 12, 625648.
Short, M. B., D'Orsogna, M. R., Brantingham, J. & Tita, G. E (2009) Measuring and modeling repeat and near-repeat burglary effects. J. Quant. Criminol. 25, 325339.
Summers, L., Johnson, S. D. & Rengert, G. (2010) The use of maps in offender interviewing. In: Bernasco, W. (editor), Offenders on Offending, Willan. Cullompton.
Tobler, W. (1970) A computer movie simulating urban growth in the Detroit Region. Econ. Geography 46, 234240.
Townsley, M., Homel, R. & Chaseling, J. (2003) Infectious burglaries: A test of the near repeat hypothesis. Br. J. Criminol. 43, 615633.
Townsley, M., Johnson, S. D. & Ratcliffe, J. H. (2008) Space-time dynamics of insurgent activity in Iraq. Security J. 21, 139146.
Trickett, A., Osborn, D., Symour, J. & Pease, K. (1992) What is different about high crime areas? Br. J. Criminol. 32, 8189.
Tseloni, M. & Pease, K. (2005) Population inequality: The case of repeat crime victimization. Int. Rev. Victimol. 12, 7590.
Vaupel, J. W. & Yashin, A. I. (1985) Heterogeneity's ruses: Some surprising effects of selection on population dynamics. Am. Stat. 39, 176185.
Weisburd, D., Bruinsma, G. J. & Bernasco, W. (2008) Units of analysis in geographic Criminology: historical developement, critical issues and open questions. In: Weisburd, D., Bernasco, W. & Bruinsma, G. J. (editors), Putting Crime in its Place: Units of Analysis in Geographic Criminology, Springer, New York. pp. 334.
Weisburd, D., Bushway, S., Lum, C. & Yang, S. (2004) Trajectories of crime at places: A longitudinal study of street segments in the city of Seattle. Criminology 42, 283321.
Weisburd, D. & Eck, J. (2004) What can police do to reduce crime, disorder and fear? Ann. Am. Acad. Political Soc. Sci. 593, 4265.
Weisburd, D. & Green, L. (1995) Policing drug hotspots: The Jersey city DMA experiment. Justice Q. 12, 711735.
Wright, R. T. & Decker, S. (1994) Burglars in the Job: Streetlife and Residential Break-ins, Northeastern University Press, Boston.
Xie, M., Pogarsky, G., Lynch, J. P. & McDowall, D. (2006) Prior police contact and subsequent victim reporting: Results from the NCVS. Justice Q. 23, 481501.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed