Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 10
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Burylov, S. V. and Zakhlevnykh, A. N. 2016. Analytical description of 2D magnetic Freedericksz transition in a rectangular cell of a nematic liquid crystal. The European Physical Journal E, Vol. 39, Issue. 6,


    Ledney, M. F. Tarnavskyy, O. S. Lesiuk, A. I. and Reshetnyak, V. Y. 2016. Modelling of director equilibrium states in a nematic cell with relief surface. Liquid Crystals, p. 1.


    Klop, Kira E. Farmer, Chris L. Dullens, Roel P.A. and Aarts, Dirk G.A.L. 2015. Direct calculation of distortion energies in colloidal liquid crystals from single-particle data. Molecular Physics, Vol. 113, Issue. 17-18, p. 2693.


    Zheng, Wenjun and Hu, Ya-Ting 2015. Alignment of Liquid Crystal Confined in Polydimethylsiloxane Channels. Molecular Crystals and Liquid Crystals, Vol. 615, Issue. 1, p. 1.


    Zheng, Wenjun and Hu, Ya-Ting 2015. Orientation of liquid crystal molecules in polydimethylsiloxane micro-channels. Liquid Crystals, p. 1.


    Lewis, Alexander H. Garlea, Ioana Alvarado, José Dammone, Oliver J. Howell, Peter D. Majumdar, Apala Mulder, Bela M. Lettinga, M. P. Koenderink, Gijsje H. and Aarts, Dirk G. A. L. 2014. Colloidal liquid crystals in rectangular confinement: theory and experiment. Soft Matter, Vol. 10, Issue. 39, p. 7865.


    Blow, M L and Telo da Gama, M M 2013. Interfacial motion in flexo- and order-electric switching between nematic filled states. Journal of Physics: Condensed Matter, Vol. 25, Issue. 24, p. 245103.


    Dammone, Oliver J. Zacharoudiou, Ioannis Dullens, Roel P. A. Yeomans, Julia M. Lettinga, M. P. and Aarts, Dirk G. A. L. 2012. Confinement Induced Splay-to-Bend Transition of Colloidal Rods. Physical Review Letters, Vol. 109, Issue. 10,


    Rojas-Gómez, O. A. and Romero-Enrique, J. M. 2012. Generalized Berreman's model of the elastic surface free energy of a nematic liquid crystal on a sawtoothed substrate. Physical Review E, Vol. 86, Issue. 4,


    van Bijnen, R. M. W. Otten, R. H. J. and van der Schoot, P. 2012. Texture and shape of two-dimensional domains of nematic liquid crystals. Physical Review E, Vol. 86, Issue. 5,


    ×

Conformal mapping techniques for the modelling of liquid crystal devices

  • A. J. DAVIDSON (a1) and N. J. MOTTRAM (a1)
  • DOI: http://dx.doi.org/10.1017/S0956792510000380
  • Published online: 24 January 2011
Abstract

In this paper, we review a number of uses of conformal mapping techniques for obtaining director profiles of liquid crystals in confined and semi-confined geometries. In particular, we will consider geometries which allow more than one stable state, some of which are of use in bistable displays. These solutions also allow the investigation of the energy of stable states and enable conclusions to be reached as to how such geometries may be optimised for bistable display applications. Such techniques are also able to provide initial configurations for the solution of more complicated situations where numerical methods are used to investigate switching characteristics.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]S. N. Atluri & T. Zhu (1998) A new meshless local petrov-galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117127.

[3]G. Barbero (1981) On the critical angle of a NLC cell. Lett. Nuovo Cimento 32, 6064.

[4]G. Barbero & N. Scaramuzza (1982) On the interface substrate-nematic - anchoring energy and topography. Lett. Nuovo Cimento 34, 173179.

[8]G. Carbone , G. Lombardo & R. Barberi (2009) Mechanically induced biaxial transition in a nanoconfined nematic liquid crystal with a topological defect. Phys. Rev. Lett. 103, 167801.

[9]N. A. Clark & S. T. Lagerwall (1980) Submicrosecond bistable electro-optic switching in liquid-crystals. Appl. Phys. Lett. 36, 899901.

[10]A. J. Davidson & N. J. Mottram (2002) Flexoelectric switching in a bistable nematic device. Phys. Rev. E 65, 051710.

[11]A. J. Davidson , C. V. Brown , N. J. Mottram , S. Ladak & C.R. Evans (2010) Defect trajectories and domain-wall loop dynamics during two-frequency switching in a bistable azimuthal nematic device. Phys. Rev. E 81, 051712.

[13]I. Dozov & G. Durand (1999) Surface controlled nematic bistability. Pramana-J. Phys. 53, 2535.

[16]S. Kitson & A. Geisow (2002) Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states. Appl. Phys. Lett. 80, 36353637.

[17]S. Ladak , A. J. Davidson , C. Brown V., & N. J. Mottram (2009) Sidewall control of static azimuthal bistable nematic alignment states. J. Phys. D - Appl. Phys. 42, 085114.

[18]S. T. Lagerwall (1999) Ferroelectric and Antiferroelectric Liquid Crystals, Wiley, New York.

[19]A. Majumdar , C. J. P. Newton , J. M. Robbins & M. Zyskin (2007) Topology and bistability in liquid crystal devices. Phys. Rev. E 75, 051703.

[22]N. Schopohl & T. J. Sluckin (1987) Defect core structure in nematic liquid-crystals. Phys. Rev. Lett. 59, 25822584.

[23]T. J. Spencer & C. M. Care (2006) Lattice boltzmann scheme for modeling liquid-crystal dynamics: Zenithal bistable device in the presence of defect motion. Phys. Rev. E 74, 061708.

[26]C. Tsakonas , A. J. Davidson , C. V. Brown & N. J. Mottram (2007) Multistable alignment states in nematic liquid crystal filled wells. Appl. Phys. Lett. 90, 111913.

[27]C. Uche , S. J. Elston & L.A. Parry-Jones (2006) Modelling zenithal bistability at an isolated edge in nematic liquid crystal cells. Liq. Cryst. 33, 697704.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: