Skip to main content
×
Home

Creeping flow of a Herschel–Bulkley fluid with pressure-dependent material moduli

  • L. FUSI (a1) and F. ROSSO (a1)
Abstract

We model the axisymmetric unidirectional flow of a Herschel–Bulkley fluid with rheological parameters that depend linearly on pressure. Adopting an appropriate scaling, we formulate the mathematical problem in cylindrical geometry exploiting an integral formulation for the momentum equation in the unyielded part. We prove that, under suitable assumptions on the data of the problem, explicit solutions can be determined. In particular, we determine the position of the yield surface together with the pressure and velocity profiles. With the aid of some plots, we finally discuss the dependence of the solution on the physical parameters of the problem.

Copyright
References
Hide All
[1] Andrade E. N. (1930) The viscosity of liquids. Nature 125, 309310.
[2] Barus C. (1893) Isothermals, isopiestics and isometrics relative to viscosity. American J. Sci. 266, 8796.
[3] Bridgman P. W. (1949) The Physics of High Pressure, Bell and Sons, Ltd., London.
[4] Casalini R. & Bair S. (2008) The inflection point in the pressure dependence of viscosity under high pressure: A comprehensive study of the temperature and pressure dependence of the viscosity of propylene carbonate. J. Chem. Phys. 128, 084511.
[5] Fusi L., Farina A. & Rosso F. (2014) Bingham flows with pressure-dependent rheological parameters. Int. J. Non-Linear Mech. 64, 3338.
[6] Fusi L., Farina A. & Rosso F. (2014) On the mathematical paradoxes for the flow of a viscoplastic film down an inclined surface. Int. J. Non-Linear Mech. 58, 139150.
[7] Fusi L., Farina A., Rosso F. & Roscani S. (2015) Pressure driven lubrication flow of a Bingham fluid in a channel: A novel approach. J. Non-Newtonian Fluid Mech. 221, 6675.
[8] Fusi L., Farina A. & Rosso F. (2015) Ill posedness of Bingham-type models for the downhill flow of a thin film on an inclined plane. Q. Appl. Math. 73, 615627.
[9] Fusi L., Farina A. & Rosso F. (2015) Planar squeeze flow of a bingham fluid. J. Non-Newtonian Fluid Mech. 225, 19.
[10] Fusi L. (2017) Non-isothermal flow of a Bingham fluid with pressure and temperature dependent viscosity. Meccanica, DOI: 10.1007/s11012-017-0655-8.
[11] Fusi L. (2017) Unsteady non-isothermal flow of a Bingham fluid with non constant material moduli at low Reynolds number. submitted to Acta Mechanica.
[12] Harris K. R. & Bair S. (2007) Temperature and pressure dependence of the viscosity of diisodecyl phthalate at temperatures between (0 and 100) C and at pressures to 1 GPa. J. Chem. Eng. Data 52 (1), 272278.
[13] Hermoso J., Martínez-Boza F. & Gallegos C. (2014) Combined effect of pressure and temperature on the viscous behaviour of all-oil drilling fluids. Oil Gas Sci. Technol.–Revue d'IFP Energies Nouvelles 69 (7), 12831296.
[14] Paluch M., Dendzik Z. & Rzoska S. J. (1999) Scaling of high-pressure viscosity data in low-molecular-weight glass-forming liquids. Phys. Rev. B 60 (5), 2979.
[15] Stokes G. G. (1845) On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids.. Trans. Camb. Phil. Soc. 8, 287341.
[16] Rajagopal K. R. & Saccomandi G. (2006) Unsteady exact solution for flows of fluids with pressure-dependent viscosities. Math. Proc. R. Ir. Acad. 106A (2), 115130.
[17] Rajagopal K. R., Saccomandi G. & Vergori L. (2009) On the Oberbeck–Boussinesq approximation for fluids with pressure dependent viscosities. Nonlinear Anal.: Real World Appl. 10 (2), 11391150.
[18] Rajagopal K. R., Saccomandi G. & Vergori L. (2012) Flow of fluids with pressure-and shear-dependent viscosity down an inclined plane. J. Fluid Mech. 706, 173189.
[19] Rajagopal K. R. (2015) Remarks on the notion of “pressure”. Int. J. Non-Linear Mech. 71, 165172.
[20] Renardy M. (2003) Parallel shear flows of fluids with a pressure-dependent viscosity. J. Non-Newtonian Fluid Mech. 114, 229236.
[21] Srinivasan S. & Rajagopal K. R. (2009) Study of a variant of Stokes' first and second problems for fluids with pressure dependent viscosities. Int. J. Eng. Sci. 47 (11–12), 13571366.
[22] Vasudevaiah M. & Rajagopal K. R. (2005) On fully developed flows of fluids with a pressure dependent viscosity in a pipe. Appl. Math. 50 (4), 341353.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 73 *
Loading metrics...

* Views captured on Cambridge Core between 11th July 2017 - 12th December 2017. This data will be updated every 24 hours.