Skip to main content

Derivation and solution of effective medium equations for bulk heterojunction organic solar cells

  • G. RICHARDSON (a1), C. P. PLEASE (a2) and V. STYLES (a3)

A drift-diffusion model for charge transport in an organic bulk heterojunction solar cell, formed by conjoined acceptor and donor materials sandwiched between two electrodes, is formulated. The model accounts for (i) bulk photogeneration of excitons, (ii) exciton drift and recombination, (iii) exciton dissociation (into polarons) on the acceptor–donor interface, (iv) polaron recombination, (v) polaron dissociation into a free electron (in the acceptor) and a hole (in the donor), (vi) electron/hole transport and (vii) electron–hole recombination on the acceptor–donor interface. A finite element method is employed to solve the model in a cell with a highly convoluted acceptor/donor interface. The solutions show that, with physically realistic parameters, and in the power generating regime, the solution varies little on the scale of the micro-structure. This motivates us to homogenise over the micro-structure; a process that yields a far simpler one-dimensional effective medium model on the cell scale. The comparison between the solution of the full model and the effective medium (homogenised) model is very favourable for applied voltages less than the built-in voltage (the power generating regime) but breaks down as the applied voltages increases above it. Furthermore, it is noted that the homogenisation technique provides a systematic way to relate effective medium modelling of bulk heterojunctions [19, 25, 36, 37, 42, 59] to a more fundamental approach that explicitly models the full micro-structure [8, 38, 39, 58] and that it allows the parameters in the effective medium model to be derived in terms of the geometry of the micro-structure. Finally, the effective medium model is used to investigate the effects of modifying the micro-structure geometry, of a device with an interdigitated acceptor/donor interface, on its current–voltage curve.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Derivation and solution of effective medium equations for bulk heterojunction organic solar cells
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Derivation and solution of effective medium equations for bulk heterojunction organic solar cells
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Derivation and solution of effective medium equations for bulk heterojunction organic solar cells
      Available formats
Hide All
[1] Allaire, G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 14821518.
[2] Allsop, N., Nürnberg, R., Lux-Steiner, M. Ch. & Schedel-Niedrig, Th. (2009) Three-dimensional simulations of a thin film heterojunction solar cell with a point contact/defect passivation structure at the heterointerface. Appl. Phys. Lett. 95, 122108-1–122108-3.
[3] Barker, J. A., Ramsdale, C. M. & Greenham, N. C. (2003) Modelling the current-voltage characteristic of bilayer polymer devices. Phys. Rev. B 67, 075205.
[4] Barrett, J. W. & Elliott, C. M. (1987) Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal. 7 283300.
[5] Braun, C. L. (1984) Electric-field assisted dissociation of charge-transfer states as a mechanism for photocarrier production. Chem. Phys. 80, 41574161.
[6] Bruna, M. & Chapman, S. J. (2015) Diffusion in spatially varying porous media. SIAM J.Appl. Maths. 75, 16481674.
[7] Brinkman, D., Fellner, K., Markowich, P. A. & Wolfram, M.-T. (2013) A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite-element scheme. Math. Models Methods Appl. Sci. 23, 839872.
[8] Buxton, G. A. & Clarke, N. (2006) Predicting structure and property relations in polymeric photovoltaic devices. Phys. Rev. B 74, 085207.
[9] Buxton, G. A. & Clarke, N. (2007) Computer simulation of polymer solar cells. Model. Simul. Mater. Sci. Eng. 15, 1326.
[10] Chen, J.-D., Cui, C., Li, Y.-Q., Zhou, L., Ou, Q.-D., Li, C., Li, Y. & Tang, J.-X. (2015) Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater. 27, 10351041.
[11] Cole, J. D. (1995) Limit process expansions and homogenization. SIAM J. Appl. Math. 55, 410424.
[12] Clarke, T. M. & Durrant, J. R. (2010) Charge photogeneration in organic solar cells. Chem. Rev. 110, 67366767.
[13] Clover, I. (2016) Heliatek raises bar for OPV efficiency to 13.2. pv magazine.
[14] Cioranescu, D. & Donato, P. (1999) An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, Oxford, Oxford University Press.
[15] Credgington, D., Kim, Y., Labram, J., Anthopoulos, T. D. & Durrant, J. (2011) Analysis of recombination in polymer C60 solar cells. J. Phys. Chem. Lett. 2, 2759.
[16] Credgington, D., Jamieson, F. C., Walker, B., Nguyen, T.-Q. & Durrant, J. R. (2012) Quantification of geminate and non-geminate recombination losses within a solution-processed small-molecule bulk heterojunction solar cell. Adv. Mater. 24, 21352141.
[17] Crone, B. K., Davids, P. S., Campbell, I. H. & Smith, D. L. (2000) Device model investigation of bilayer organic light emitting diodes. J. Appl. Phys. 87, 1974.
[18] Davids, P. S., Campbell, I. H. & Smith, D. L. (1997) Device model for single carrier organic diodes. J. Appl. Phys. 82, 6319.
[19] de Falco, C., Sacco, R. & Verri, M. (2010) Analytical and numerical study of photocurrent transients in organic polymer solar cells. Comput. Methods Appl. Mech. Eng. 199, 17221732.
[20] Deibel, C. & Dyakonov, V. (2010) Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401.
[21] Foster, J. M., Kirkpatrick, J. & Richardson, G. (2013) Asymptotic and numerical prediction of current-voltagencurves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit. J. Appl. Phys. 114, 104501.
[22] Gajewski, H., Kaiser, H. Chr., Langmach, H., Nürnberg, R. & Richter, R. H. (2003) Mathematical modelling and numerical simulation of semiconductor detectors. In: Jäger, W. & Krebs, H. J. (editors), Mathematics? Key Technology for the Future, Springer, Berlin, Heidelberg, pp. 355364.
[23] Gajewski, H. et al. TeSCA Two- and Three-Dimensional Semi-Conductor Analysis Package, Weierstrass Institute for Applied Analysis and Stochastics, Berlin.
[24] Günes, S., Neugebauer, H. & Sariciftci, N. S. (2007) Conjugated polymer-based organic solar cells. Chem. Rev. 103, 1324.
[25] Gregg, K. A. & Hanna, M. C. (2003) Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys. 93, 36053614.
[26] Groves, C., Blakesley, J. C. & Greenham, N. C. (2010) Effect of charge trapping on geminate recombination and polymer solar cell performance. Nano Lett. 10, 10631069.
[27] Groves, C., Kimber, R. G. E. & Walker, A. B. (2010) Simulation of loss mechanisms in organic solar cells. J. Chem. Phys. 133, 144110.
[28] Hoppe, H. & Sariciftci, N. S. (2004) Organic solar cells: An overview. J. Mater. Res. 19, 19241945.
[29] de Jongh, P. E. & Vanmaekelbergh, D. (1996) Trap-limited transport in assemblies of nanometer-size TiO2 particles. Phys. Rev. Lett. 77, 34273430.
[30] Keller, J. B. (1980) Darcy's law for flow in porous media and the two-space method. In: Lecture Notes in Pure and Applied Mathematics vol. 54, Dekker, New York.
[31] Keller, J. B. (1977) Effective behavior of heterogeneous media. In: Landman, U. (editor), Statistical Mechanics and Statistical Methods in Theory and Application, Plenum, New York, pp. 631644.
[32] Kimber, R. G. E., Wright, E. N., O'Kane, S. E. J., Walker, A. B. & Blakesley, J. C. (2012) Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics. Phys. Rev. B 86, 235206.
[33] Kirchartz, T., Pieters, B. E., Kirkpatrick, J., Rau, U. & Nelson, J. (2011) Recombination via tail states in polythiophene: Fullerene solar cells. Phys. Rev. B 83, 115209.
[34] Kirkpatrick, J., Marcon, V., Kremer, K., Nelson, J. & Andrienko, D. (2007) Charge mobility in discotic mesophases: A multiscale quantum and classical study. Phys. Rev. Lett. 98, 227402.
[35] Kodali, H. K. & Ganapathysubramanian, B. (2012) Computer simulation of heterogeneous polymer photovoltaic devices. Model. Simul. Mater. Sci. Eng. 20, 035015.
[36] Koster, L. J. A., Smits, E. C. P., Mihailetchi, V. D. & Blom, P. W. M. (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B. 72, 085205.
[37] Kotlarski, J. D., Blom, P. W., Koster, L. J., Lenes, M. & Sloof, L. H. (2008) Combined optical and electrical modeling of polymer: Fullerene bulk heterojunction solar cells. J. Appl. Phys. 103, 084502.
[38] Martin, C. M., Burlakov, V. M. & Assender, H. E. (2006) Modellng charge transport in composite solar cells. Sol. Energy Mater. Sol. Cells 90, 900915.
[39] Martin, C. M., Burlakov, V. M., Assender, H. E. & Barkhouse, D. A. R. (2007) A numerical model for explaining the role of the interface morphology in composite solar cells. J. Appl. Phys. 102, 104506.
[40] Markov, D. E., Amsterdam, E., Blom, P. W. M., Sieval, A. B. & Hummelen, J. C. (2005) Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. J. Phys. Chem. A 109, 52665274.
[41] McNeill, C. R., Westenhoff, S., Groves, C., Friend, R. H. & Greenham, N. C. (2007) Influence of nanoscale phase separation on the charge generation dynamics and photovoltaic performance of conjugated polymer blends: Balancing charge generation and separation. J. Phys. Chem. C 111, 1915319160.
[42] Nelson, J. (2003) Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection. Phys. Rev. B 67, 155209.
[43] Nelson, J. (2003) The Physics of Solar Cells, London, Imperial College Press.
[44] Offermans, T., Meskers, S. C. J. & Janssen, R. A. J. (2005) Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: A two-step dissociation mechanism. Chem. Phys. 308, 125133.
[45] Pautmeier, L., Richert, R. & Bässler, H. (1990) Poole-Frenkel behaviour of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation. Synth. Met. 37, 271.
[46] Peumans, P., Uchida, S. & Forrest, S. R. (2003) Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158162.
[47] Potscavage, W. J., Yoo, S. & Kippelen, B. (2008) Origin of the open-circuit voltage in a multilayer heterojunction organic solar cells. Appl. Phys. Lett. 93, 193308.
[48] Richardson, G., Denuault, G. & Please, C. P. (2012) Multiscale modelling and analysis of lithium-ion battery charge and discharge. J. Eng. Math. 72, 4172.
[49] Richardson, G., Please, C. P., Foster, J. & Kirkpatrick, J. A. (2012) Asymptotic solution of a model for bilayer organic diodes and solar cells. SIAM J. Appl. Math. 72, 17921817.
[50] Richardson, G. & Chapman, S. J. (2011) Derivation of the bidomain equations for a beating heart with a general microstructure. SIAM J. Appl. Math. 71, 657675.
[51] Scott, J. C. & Malliaras, G. G. (1999) Charge injection and recombination at the metal-organic interface. Chem. Phys. Lett. 299, 115119.
[52] Seunhyup, Y., Potscavage, W. J., Domercqua, B., Lic, T. D., Jones, S. C., Szozskiewicz, R., Levib, D., Riedoc, E., Marder, S. R. & Killen, B. (2007) Analysis of improved photovoltaic properties of pentacene/C60 organic solarcells: Effects of exciton blocking layer thickness and thermal annealing. Solid-State Electron. 51, 1367.
[53] Rao, A., Wilson, M. W. B., Hodgkiss, J. M., Albert-Seifried, S., Bässler, H. & Friend, R. H. (2010) Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132, 1269812703.
[54] Scharfetter, D. L. & Gummel, H. K. (1969) Large-signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron. Dev. 16, 6477.
[55] Sze, S. M. & Kwok, K. Ng (2006) Physics of Semiconductor Devices, 3rd ed., Wiley-Interscience, New York.
[56] Tansae, C., Blom, P. W. M., de Leeuw, D. M. & Meijer, E. J. (2004) Charge carrier density dependence of mobility in poly-p-phenylene vinylene. Phys. Status Solidi B 201, 1236.
[57] Verlaak, S., Beljonne, D., Cheyns, D., Rolin, C., Linares, M., Castet, F., Cornil, J. & Heremans, P. (2009) Electronic structure and geminate pair energetics at organic-organic interfaces: The case of pentacene/C60 heterojunctions. Adv. Funct. Mater. 19, 38093814.
[58] Williams, J. & Walker, A. B. (2008) Two-dimensional simulations of bulk heterojunction solar cell characteristics. Nanotechnology 19, 424011.
[59] Wagenpfahl, A., Rauh, D., Binder, M., Deibel, C. & Dyakonov, V. (2010) S-shaped current-voltage characteristics of organic solar devices. Phys. Rev. B 82, 115306.
[60] Yang, F., Shtein, M. & Forrest, S. R. (2005) Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nat. Mat. 4, 3741.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 1
Total number of PDF views: 116 *
Loading metrics...

Abstract views

Total abstract views: 529 *
Loading metrics...

* Views captured on Cambridge Core between 10th January 2017 - 22nd June 2018. This data will be updated every 24 hours.