Skip to main content
    • Aa
    • Aa

A dynamic spatial model of conflict escalation

  • P. BAUDAINS (a1) (a2), H.M. FRY (a3), T.P. DAVIES (a1) (a2), A.G. WILSON (a3) and S.R. BISHOP (a1)...

In both historical and modern conflicts, space plays a critical role in how interactions occur over time. Despite its importance, the spatial distribution of adversaries has often been neglected in mathematical models of conflict. In this paper, we propose an entropy-maximising spatial interaction method for disaggregating the impact of space, employing a general notion of ‘threat’ between two adversaries. This approach addresses a number of limitations that are associated with partial differential equation approaches to spatial disaggregation. We use this method to spatially disaggregate the Richardson model of conflict escalation, and then explore the resulting model with both analytical and numerical treatments. A bifurcation is identified that dramatically influences the resulting spatial distribution of conflict and is shown to persist under a range of model specifications. Implications of this finding for real-world conflicts are discussed.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. P. Atkinson , A. Gutfraind & M. Kress (2011) When do armed revolts succeed: Lessons from Lanchester theory. J. Oper. Res. Soc. 63 (10), 13631373.

L. Blank , C. E. Enomoto , D. Gegax , T. Mcguckin & C. Simmons (2008) A dynamic model of insurgency: The case of the war in Iraq. Peace Econ. Peace Sci. Public Policy 14 (2), 126.

P. J. Brantingham , G. E. Tita , M. B. Short & S. E. Reid (2012) The ecology of gang territorial boundaries. Criminology 50 (3), 851885.

T. P. Davies , H. M. Fry , A. G. Wilson & S. R. Bishop (2013) A mathematical model of the London riots and their policing. Sci. Rep. 3, 1303.

S. J. Deitchman (1962) A Lanchester model of guerrilla warfare. Oper. Res. 10 (6), 818827.

A. Dennett & A. G. Wilson (2013) A multi-level spatial interaction modelling framework for estimating inter-regional migration in Europe. Environ. Plan. A 45 (6), 14911507.

R. Durrett & S. Levin (1994) The importance of being discrete (and spatial). Theor. Population Biol. 46 (3), 363394.

E. González & M. Villena (2011) Spatial Lanchester models. Eur. J. Oper. Res. 210 (3), 706715.

B. Harris & A. Wilson (1978) Equilibrium values and dynamics of attractiveness terms in production-constrained spatial-interaction models. Environ. Plan. A 10 (4), 371388.

S. Jackson , B. Russett , D. Snidal & D. Sylvan (1978) Conflict and coercion in dependent states. J. Conflict Resolution 22 (4), 627657.

M. Karmeshu , V. Jain & A. Mahajan (1990) A dynamic model of domestic political conflict process. J. Conflict Resolution 34 (2), 252269.

T. Keane (2011) Combat modelling with partial differential equations. Appl. Math. Modelling 35 (6), 27232735.

M. Kress & N. J. MacKay (2014) Bits or shots in combat? The generalized Deitchman model of guerrilla warfare. Oper. Res. Lett. 42 (1), 102108.

L. S. Liebovitch , V. Naudot , R. Vallacher , A. Nowak , L. Bui-Wrzosinska & P. Coleman (2008) Dynamics of two-actor cooperation-competition conflict models. Phys. A: Stat. Mech. Appl. 387 (25), 63606378.

B. Mandelbrot (1967) How long is the coast of britain? Statistical self-similarity and fractional dimension. Science 156 (3775), 636638.

V. Protopopescu , R. Santoro & J. Dockery (1989) Combat modeling with partial differential equations. Eur. J. Oper. Res. 38 (2), 178183.

M. Qubbaj & R. Muneepeerakul (2012) Two-actor conflict with time delay: A dynamical model. Phys. Rev. E 86 (5), 056101.

L. F. Richardson (1952) Contiguity and deadly quarrels: The local pacifying influence. J. R. Stat. Soc. Ser. A (General) 115 (2), 219231.

A. Rojas-Pacheco , B. Obregón-Quintana , L. S. Liebovitch & L. Guzmán-Vargas (2013) Time-delay effects on dynamics of a two-actor conflict model. Phys. A: Stat. Mech. Appl. 392 (3), 458467.

A. M. Saperstein (2007) Chaos in models of arms races and the initiation of war. Complexity 12 (3), 2226.

M. B. Short , A. Bertozzi & P. Brantingham (2010a) Nonlinear patterns in urban crime: Hotspots, bifurcations and suppression. SIAM J. Appl. Dyn. Syst. 9 (2), 462483.

M. B. Short , P. J. Brantingham , A. L. Bertozzi & G. E. Tita (2010b) Dissipation and displacement of hotspots in reaction-diffusion models of crime. Proc. Natl. Acad. Sci. 107 (9), 39613965.

L. M. Smith , M. S. Keegan , T. Wittman , G. O. Mohler & A. L. Bertozzi (2010) Improving density estimation by incorporating spatial information. EURASIP J. Adv. Signal Process. 2010, 265631.

W. R. Tobler (1970) A computer model simulating urban growth in the Detroit region. Econ. Geography 46, 234240.

A. G. Wilson (1967) A statistical theory of spatial distribution models. Transp. Res. 1 (3), 253269.

A. G. Wilson (2006) Ecological and urban systems models: Some explorations of similarities in the context of complexity theory. Environ. Plann. A 38 (4), 633646.

A. G. Wilson (2008) Boltzmann, Lotka and Volterra and spatial structural evolution: An integrated methodology for some dynamical systems. J. R. Soc., Interface/the R. Soc. 5 (25), 865–71.

D. A. Zinnes & R. G. Muncaster (1984) The dynamics of hostile activity and the prediction of war. J. Conflict Resolution 28 (2), 187229.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 99 *
Loading metrics...

Abstract views

Total abstract views: 803 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th September 2017. This data will be updated every 24 hours.