Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T08:03:09.197Z Has data issue: false hasContentIssue false

Functional series and Hashin–Shtrikman type bounds on the effective conductivity of random media

Published online by Cambridge University Press:  26 September 2008

K. Z. Markov
Affiliation:
Faculty of Mathematics and Informatics, ‘St. Kl. Ohridski’ University of Sofia, 1126 Sofia, Bulgaria
Kr. D. Zvyatkov
Affiliation:
Institute of Mathematics and Informatics, ‘K. Preslavski’ University, 9700 Schumen, Bulgaria

Abstract

A general method of placing variational bounds on the effective scalar conductivity of random heterogeneous solids is proposed. The method utilizes the Hashin-Shtrikman variational principle and trial fields which are obtained upon truncating the functional series expansion for the polarization field in the medium. It is shown how the earlier variational procedures due to Hashin and Shtrikman, Milton and Phan-Thien and Willis find natural places in the proposed general scheme. The new results reported include, for example, the fact of nonexistence of certain Gaussian-like random media and, for dispersions of spheres with volume fraction c, an exact O(c2) relation for the effective conductivity which contains absolutely convergent integrals only.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beasley, J. D. & Torquato, S. 1986 Bounds on the conductivity of a suspension of random impenetrable spheres. J. Appl. Phys. 60, 35763581.CrossRefGoogle Scholar
Beran, M. 1965 Use of a variational approach to determine bounds for the effective permittivity of a random medium. Nuovo Cimento 38, 771782.CrossRefGoogle Scholar
Beran, M. 1968 Statistical Continuum Theories. Wiley.CrossRefGoogle Scholar
Brown, W. F. 1955 Solid mixture permittivities. J. Chein. Physics 23, 15141517.CrossRefGoogle Scholar
Christov, C. I. 1985 A further development of the concept of random density function with application to Volterra-Wiener expansions. C. R. Acad. Bulg. Sci. 38 (1), 3538.Google Scholar
Christov, C. I. & Markov, K. Z. 1985 Stochastic functional expansion for random media with perfectly disordered constitution. SIAM J. Appl. Math. 45, 289311.CrossRefGoogle Scholar
Felderhof, B. U. 1982 Bounds on the effective dielectric constant of a suspension of uniform spheres. J. Phys. C15, 39533966.Google Scholar
Felderhof, B. U., Ford, G. W. & Cohen, E. G. D. 1982 Two-particle cluster integral in the expansion of the dielectric constant. J. Stat. Phys. 28, 649672.CrossRefGoogle Scholar
Finkel'berg, V. M. 1964 Dielectric permeability of a mixture. J. Tekhn. Fiziki 34 (3), 509518. (in Russian.) (English translation in Techn. Phys. 9, 396402.)Google Scholar
Jeffrey, D. J. 1973 Conduction through a random suspension of spheres. Proc. Roy. Soc. London A335, 355367.Google Scholar
Jeffrey, D. J. 1978 The physical significance of non-convergent integrals in expressions for bulk quantities. In Continuum Models and Discrete Systems (ed. Provan, J.), University of Waterloo Press, Ontario, pp. 653674.Google Scholar
Hashin, Z. & Shtrikman, S. 1962 A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 31253131.CrossRefGoogle Scholar
Hill, R. 1963 New derivations of some elastic extremum principles. In Progress in Applied Mechanics, Prager Anniversary Volume, Macmillan, pp. 99106.Google Scholar
Kröner, E. 1977 Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids 25, 137155.CrossRefGoogle Scholar
Markov, K. Z. 1987 Application of Volterra-Wiener series for bounding the overall conductivity of heterogeneous media. I. General procedure. II. Suspensions of equi-sized spheres. SIAM J. Appl. Math. 47, 831849, 850870.CrossRefGoogle Scholar
Markov, K. Z. 1989 On the heat propagation problem for random dispersions of spheres. Math. Balkanica (New Series) 3, 399417.Google Scholar
Markov, K. Z. 1991 On the factorial functional series and their application to random media. SIAM J. Appl. Math. 51, 172186.CrossRefGoogle Scholar
Markov, K. Z. & Christov, C. I. 1992 On the problem of heat conduction for random dispersions of spheres allowed to overlap. Math. Models & Methods in Appl. Sci. 2, 249269.CrossRefGoogle Scholar
Markov, K. Z. & Zvyatkov, Kr. D. 1988 c2- bounds on the elastic moduli of random dispersions of spheres. C. R. Acad. Bulg. Sci. 41 (7), 2124.Google Scholar
Markov, K. Z. & Zvyatkov, Kr. D. 1990 New c2-bounds on the effective properties of random dispersions of spheres. In Proc. 6th Bulg. Congress on Mechanics, Vol. 2, Bulg. Acad. Sci., Sofia, pp. 313316.Google Scholar
Markov, K. Z. & Zvyatkov, Kr. D. 1991a On the optimal third-order bounds on the effective conductivity of random dispersions of spheres. J. Theor. Applied. Mech., Bulg. Acad. Sci. 22 (3), 107116.Google Scholar
Markov, K. Z. & Zvyatkov, Kr. D. 1991b Optimal third-order bounds on the effective properties of some composite media, and related problems. Adv. in Mechanics (Warsaw) 14 (4), 346.Google Scholar
Markov, K. Z. & Zvyatkov, Kr. D. 1994 Functional series and Hashin-Shtrikman's type bounds on the effective properties of random media. In: Recent Advances in Mathematical Modelling of Composite Materials (ed. Markov, K. Z.), pp. 59106. World Scientific.CrossRefGoogle Scholar
Milton, G. W. & Phan-Thien, N. 1982 New bounds on effective elastic moduli of two-components material. Proc. Roy. Soc. London A380, 305331.Google Scholar
Phan-Thien, N. & Milton, G. W. 1982 New bounds on effective thermal conductivity of N-phase materials. Proc. Roy. Soc. London A380, 333348.Google Scholar
Prager, S. 1963 Diffusion and viscous flow in concentrated suspensions. Physica 29, 129138.CrossRefGoogle Scholar
Stratonovich, R. L. 1967 Topics in Theory of Random Noises, Vol. 1. Gordon and Breach.Google Scholar
Schetzen, D. L. 1980 The Volterra and Wiener Theories of Nonlinear Systems. Wiley.Google Scholar
Torquato, S. 1986 Bulk properties of two-phase disordered media. III. New bounds on the effective conductivity of dispersions of penetrable spheres. J. Chem. Phys. 84, 63456359.CrossRefGoogle Scholar
Torquato, S. & Stell, G. 1985 Bounds on the effective thermal conductivity of a dispersion of fully penetrable spheres. Lett. Appl. Engng Sci. 23, 375383.Google Scholar
Willis, J. R. 1978 Variational principles and bounds for the overall properties of composites. In: Continuum Models and Discrete Systems (ed. Provan, J.), University of Waterloo Press, Ontario, pp. 185215.Google Scholar
Willis, J. R. 1980 Relationship between derivations of the overall properties of composites by perturbation expansions and variational principles. In: Variational Methods in Mechanics of Solids (ed. Nemat-Nasser, S.), Pergamon Press, pp. 5966.CrossRefGoogle Scholar
Willis, J. R. 1981 Variational and related methods for the overall properties of composites. Adv. Appl. Mechanics 21, 178.CrossRefGoogle Scholar
Zvyatkov, Kr. D. 1992 On certain Hashin-Shtrikman's type bounds for random dispersion. C. R. Acad. Bulg. Sci. 45 (9), 2123.Google Scholar