Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T08:52:58.063Z Has data issue: false hasContentIssue false

Gravity-driven thin liquid films with insoluble surfactant: smooth traveling waves

Published online by Cambridge University Press:  01 December 2007

RACHEL LEVY
Affiliation:
Department of Mathematics, Duke University, Durham NC 27708, USA Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, USA
MICHAEL SHEARER
Affiliation:
Department of Mathematics, Duke University, Durham NC 27708, USA Department of Mathematics and Center for Research in Scientific Computation, N.C. State University Raleigh, NC 27695, USA
THOMAS P. WITELSKI
Affiliation:
Department of Mathematics, Duke University, Durham NC 27708, USA

Abstract

The flow of a thin layer of fluid down an inclined plane is modified by the presence of insoluble surfactant. For any finite surfactant mass, traveling waves are constructed for a system of lubrication equations describing the evolution of the free-surface fluid height and the surfactant concentration. The one-parameter family of solutions is investigated using perturbation theory with three small parameters: the coefficient of surface tension, the surfactant diffusivity, and the coefficient of the gravity-driven diffusive spreading of the fluid. When all three parameters are zero, the nonlinear PDE system is hyperbolic/degenerate-parabolic, and admits traveling wave solutions in which the free-surface height is piecewise constant, and the surfactant concentration is piecewise linear and continuous. The jumps and corners in the traveling waves are regularized when the small parameters are nonzero; their structure is revealed through a combination of analysis and numerical simulation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Beretta, E.Hulshof, J. & Peletier, L. A. (1996) On an ODE from forced coating flow. J. Diff. Eq., 130 (1), 247265.CrossRefGoogle Scholar
[2]Bernis, F. & Peletier, L. A. (1996) Two problems from draining flows involving third-order ordinary differential equations. SIAM J. Math. Anal., 27 (2), 515527.CrossRefGoogle Scholar
[3]Bertozzi, A. L. & Brenner, M. P. (1997) Linear stability and transient growth in driven contact lines. Phys. Fluids, 9 (3): 530539.CrossRefGoogle Scholar
[4]Bertozzi, A. L., Münch, A. & Shearer, M. (1999) Undercompressive shocks in thin film flows. Physica D, 134 (4), 431464.CrossRefGoogle Scholar
[5]Bowen, M., Sur, J., Bertozzi, A. L. & Behringer, R. P. (2005) Nonlinear dynamics of two-dimensional undercompressive shocks. Physica D, 209 (1–4), 3648.CrossRefGoogle Scholar
[6]Edmonstone, B. D., Matar, O. K. & Craster, R. V. (2004) Flow of surfactant-laden thin films down an inclined plane. J. Eng. Math., 50 (2–3), 141156.CrossRefGoogle Scholar
[7]Edmonstone, B. D., Matar, O. K. & Craster, R. V. (2005) Surfactant-induced fingering phenomena in thin film flow down an inclined plane. Phys. D, 209 (1-4), 6279.CrossRefGoogle Scholar
[8]Galaktionov, V. A. (2006) On higher-order viscosity approximations of odd-order nonlinear PDEs. Preprint.CrossRefGoogle Scholar
[9]Huppert, H. E. (1982) Flow and instability of a viscous current down a slope. Nature, 300, 427429.CrossRefGoogle Scholar
[10]Jensen, O. E. & Grotberg, J. B. (1992) Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. J. Fluid Mech., 240, 259288.CrossRefGoogle Scholar
[11]Jensen, O. E. & Grotberg, J. B. (1993) The spreading of heat or soluble surfactant along a thin liquid film. Phys. Fluids A, 5 (1), 5868.CrossRefGoogle Scholar
[12]King, J. R. (1988) Approximate solutions to a nonlinear diffusion equation. J. Eng. Math., 22 (1), 5372.CrossRefGoogle Scholar
[13]King, J. R. & Please, C. P. (1986) Diffusion of dopant in crystalline silicon: an asymptotic analysis. IMA J. Appl. Math., 37 (3), 185197.CrossRefGoogle Scholar
[14]Levy, R. & Shearer, M. (2006) The motion of a thin film driven by surfactant and gravity. SIAM J. Appl. Maths, 66 (5), 15881609.CrossRefGoogle Scholar
[15]Dal Passo, R.Bertsch, M. & Nitsch, C. (2005) A system of degenerate parabolic nonlinear pde's: a new free boundary problem. Interfaces Free Bound., 7, 255276.Google Scholar
[16]Marangoni, C. (1865) On the expansion of a drop of liquid floating in the surface of another liquid. PhD thesis, University of Pavia.Google Scholar
[17]Matar, O. K. (2002) Nonlinear evolution of thin free viscous films in the presence of soluble surfactant. Phys. Fluids, 14, 42164234.CrossRefGoogle Scholar
[18]Mock, M. S. (1976) On fourth-order dissipation and single conservation laws. Commun. Pure Appl. Math., 29, 383388.CrossRefGoogle Scholar
[19]Moriarty, J. A., Schwartz, L. W. & Tuck, E. O. (1991) Unsteady spreading of thin liquid films with small surface tension. Phys. Fluids A, 3 (5), 733742.CrossRefGoogle Scholar
[20]Münch, A. (2003) Pinch-off transition in Marangoni-driven thin films. Phys. Rev. Lett., 91 (1), 016105.CrossRefGoogle ScholarPubMed
[21]Münch, A. & Wagner, B. A. (1999) Numerical and asymptotic results on the linear stability of a thin film spreading down a slope of small inclination. Eur. J. Appl. Math., 10 (3), 297318.CrossRefGoogle Scholar
[22]Myers, T. G. (1998) Thin films with high surface tension. SIAM Rev., 40 (3), 441462.CrossRefGoogle Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. (1997) Long-scale evolution of thin liquid films. Rev. Modern Phys., 69 (3), 931980.CrossRefGoogle Scholar
[24]Renardy, M. (1996) A singularly perturbed problem related to surfactant spreading on thin films. Nonlinear Anal., 27 (3), 287296.CrossRefGoogle Scholar
[25]Renardy, M. (1997) A degenerate parabolic-hyperbolic system modeling the spreading of surfactants. SIAM J. Math. Anal., 28 (5), 10481063.CrossRefGoogle Scholar
[26]Schaeffer, D. G. & Shearer, M. (1987) Riemann problems for nonstrictly hyperbolic systems of conservation laws. Trans. AMS, 301, 267306.Google Scholar
[27]Stone, H. A. (1990) A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A, 2 (1), 111112.CrossRefGoogle Scholar
[28]Troy, W. C. (1993) Solutions of third-order differential equations relevant to draining and coating flows. SIAM J. Math. Anal., 24 (1), 155171.CrossRefGoogle Scholar
[29]Tuck, E. O. & Schwartz, L. W. (1990) A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev., 32, 453469.CrossRefGoogle Scholar
[30]Warner, M. R. E. & Craster, R.V. (2004) Fingering phenomena created by a soluble surfactant deposition on a thin liquid film. Phys. Fluids, 16, 29332951.CrossRefGoogle Scholar
[31]Witelski, T. P., Shearer, M. & Levy, R. (2006) Growing surfactant waves in thin liquid films driven by gravity. Appl. Math. Res. Exp., 2006 (15487), 121.Google Scholar