Skip to main content Accessibility help

Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method

  • ANCA CAPATINA (a1) and HORIA ENE (a1) (a2)


We study the homogenisation of the Stokes system with a non-homogeneous Fourier boundary condition on the boundary of the holes, depending on a parameter γ. Such systems arise in the modelling of the flow of an incompressible viscous fluid through a porous medium under the influence of body forces. At the limit, by using the periodic unfolding method in perforated domains, we obtain, following the values of γ, different Darcy's laws of type Mu = −Np + F with suitable matrices M and N with F depending on the right-hand side in the bulk term and in the boundary condition.



Hide All
[1]Allaire, G. (1989) Homogenization of Navier-Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. XLIV, 605642.
[2]Cioranescu, D. & Donato, P. (1988) Homogénéisation du problème du Neumann non homogène dans des ouverts perforés. Asymptotic Anal. 1, 115138.
[3]Cioranescu, D., Donato, P. & Ene, H. (1996) Homogenization of the Stokes problem with non homogeneous slip boundary conditions. Math. Methods Appl. Sci. 19, 857881.
[4]Cioranescu, D., Donato, P. & Griso, G. (2002) Periodic unfolding and homogenization. C. R. Math. Acad. Sci., Paris 335, 99104.
[5]Cioranescu, D., Donato, P. & Zaki, R. (2006) Periodic unfolding and Robin problems in perforated domains. C. R. Math. Acad. Sci., Paris, Ser. VII 342, 469474.
[6]Cioranescu, D., Donato, P. & Zaki, R. (2007) Asymptotic behaviour of elliptic problems in perforated domains with nonlinear conditions. Asymptotic Anal. 53 (4), 209235.
[7]Conca, C. (1985) On the application of the homogenization theory to a class of problems arising in fluid mechanics. J. Math. Pures Appl. 64, 3175.
[8]Damlamian, A. (2006) An elementary introduction to periodic unfolding. Gakuto Int. Ser., Math. Sci. Appl. 24, 119136.
[9]Ene, H. & Sanchez-Palencia, E. (1975) Equation et phénomenes de surface pour l'écoulement dans un modèle de milieux poreux. J. Mech. 14, 73108.
[10]Melcher, J. R. (1981) Continuum Electromechanics, MIT Press, Cambridge, MA and London, England.
[11]Sanchez-Palencia, E. (1980) Non homogeneous media and vibration theory. Lecture Notes in Physics, Vol. 127, Springer, Berlin.
[12]Tartar, L. (1976) Quelques remarques sur l'homogénéisation. In: Functional Analysis and Numerical Analysis, Proc. Japan-France séminar édition, Japanese Society for the Promotion of Science, pp. 468482.
[13]Tartar, L. (1980) Incompressible fluid flow in a porous medium convergence of the homogenization process. In: Appendix to Lecture Notes in Physics, Vol. 127, Springer-Velag, Berlin.
[14]Temam, R. (1979) Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam.
[15]Vanninathan, M. (1981) Homogenization of eigenvalues problems in perforated domains. Proc. Indian Acad. Sci. 90, 239271.
[16]Zaki, R. (2007) La méthode d'éclatement périodique pour l'xshomogénéisation dans les domaines perforés, Thèse, Univerité Pierre et Marie Curie, Paris.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed