Skip to main content
×
Home

Hybrid PDE solver for data-driven problems and modern branching

  • FRANCISCO BERNAL (a1), GONÇALO DOS REIS (a2) (a3) and GREIG SMITH (a2) (a4)
Abstract

The numerical solution of large-scale PDEs, such as those occurring in data-driven applications, unavoidably require powerful parallel computers and tailored parallel algorithms to make the best possible use of them. In fact, considerations about the parallelization and scalability of realistic problems are often critical enough to warrant acknowledgement in the modelling phase. The purpose of this paper is to spread awareness of the Probabilistic Domain Decomposition (PDD) method, a fresh approach to the parallelization of PDEs with excellent scalability properties. The idea exploits the stochastic representation of the PDE and its approximation via Monte Carlo in combination with deterministic high-performance PDE solvers. We describe the ingredients of PDD and its applicability in the scope of data science. In particular, we highlight recent advances in stochastic representations for non-linear PDEs using branching diffusions, which have significantly broadened the scope of PDD. We envision this work as a dictionary giving large-scale PDE practitioners references on the very latest algorithms and techniques of a non-standard, yet highly parallelizable, methodology at the interface of deterministic and probabilistic numerical methods. We close this work with an invitation to the fully non-linear case and open research questions.

Copyright
Footnotes
Hide All

F. Bernal acknowledges funding from Centre de Mathématiques Appliquées (CMAP), École Polytechnique. G. dos Reis gratefully thanks the partial support by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações). G. Smith was supported by The Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training funded by the UK Engineering and Physical Sciences Research Council (grant [EP/L016508/01]), the Scottish Funding Council, Heriot-Watt University and the University of Edinburgh.

Footnotes
References
Hide All
[1] Acebrón J. A., Busico M. P., Lanucara P. & Spigler R. (2005a) Domain decomposition solution of elliptic boundary-value problems via Monte Carlo & quasi-Monte Carlo methods. SIAM J. Sci. Comput. 27 (2), 440457.
[2] Acebrón J. A., Busico M. P., Lanucara P. & Spigler R. (2005b) Probabilistically induced domain decomposition methods for elliptic boundary-value problems. J. Comput. Phys. 210 (2), 421438.
[3] Acebrón J. A. & Ribeiro M. A. (2016) A Monte Carlo method for solving the one-dimensional Telegraph equations with boundary conditions. J. Comput. Phys. 305, 2943.
[4] Acebrón J. A. & Rodríguez-Rozas Á. (2011) A new parallel solver suited for arbitrary semilinear parabolic partial differential equations based on generalized random trees. J. Comput. Phys. 230 (21), 78917909.
[5] Acebrón J. A. & Rodríguez-Rozas Á. (2013) Highly efficient numerical algorithm based on random trees for accelerating parallel Vlasov–Poisson simulations. J. Comput. Phys. 250, 224245.
[6] Acebrón J. A., Rodríguez-Rozas Á. & Spigler R. (2009) Domain decomposition solution of nonlinear two-dimensional parabolic problems by random trees. J. Comput. Phys. 228 (15), 55745591.
[7] Acebrón J. A., Rodríguez-Rozas Á. & Spigler R. (2010a) Efficient parallel solution of nonlinear parabolic partial differential equations by a probabilistic domain decomposition. J. Sci. Comput. 43 (2), 135157.
[8] Acebrón J. A., Rodríguez-Rozas, Á. & Spigler R. (2010b) A fully scalable algorithm suited for petascale computing and beyond. Comput. Sci. Res. Dev. 25 (1–2), 115121.
[9] Agarwal A. & Claisse J. (2017) Branching diffusion representation of quasi-linear elliptic pdes and estimation using monte carlo method. preprint, arXiv:1704.00328.
[10] Benth F. E., Karlsen K. H. & Reikvam K. (2003) A semilinear Black and Scholes partial differential equation for valuing American options. Finance Stoch. 7 (3), 277298.
[11] Bernal F. & Acebrón J. A. (2016a) A comparison of higher-order weak numerical schemes for stopped stochastic differential equations. Comm. Comput. Phys. 20 (3), 703732.
[12] Bernal F. & Acebrón J. A. (2016b) A multigrid-like algorithm for probabilistic domain decomposition. Comput. Math.Appl. 72 (7), 17901810.
[13] Bernal F., Acebrón J. A. & Anjam I. (2014) A stochastic algorithm based on fast marching for automatic capacitance extraction in non-Manhattan geometries. SIAM J. Imag. Sci. 7 (4), 26572674.
[14] Bihlo A. & Haynes R. D. (2014) Parallel stochastic methods for PDE based grid generation. Comput. Math. Appl. 68 (8), 804820.
[15] Bihlo A. & Haynes R. D. (2016) A stochastic domain decomposition method for time dependent mesh generation. In: Domain Decomposition Methods in Science and Engineering XXII. Dickopf T., Gander M. J., Halpern L., Krause R., & Pavarino L. F. (editors), Springer, Vol. 104, pp. 107115.
[16] Bihlo A., Haynes R. D. & Walsh E. (2015) Stochastic domain decomposition for time dependent adaptive mesh generation. J. Math. Stud. 48 (2), 106124.
[17] Bossy M., Champagnat N., Leman H., Maire S., Violeau L. & Yvinec M. (2015) Monte Carlo methods for linear and non-linear Poisson-Boltzmann equation. ESAIM: Proc. Surv. 48, 420446.
[18] Bouchard B., Elie R. & Touzi N. (2009) Discrete-time approximation of BSDEs and probabilistic schemes for fully nonlinear PDEs. In: Advanced Financial Modelling, Albrecher H., Runggaldier W. J. & Schachermayer W. (editors), Radon Ser. Comput. Appl. Math., Vol. 8, Walter de Gruyter, Berlin, pp. 91124.
[19] Bouchard B., Tan X. & Zou Y. (2016) Numerical approximation of BSDEs using local polynomial drivers and branching processes. arXiv:1612.06790.
[20] Cheridito P., Soner H. M., Touzi N. & Victoir N. (2007) Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Comm. Pure Appl. Math. 60 (7), 10811110.
[21] Costantini C., Pacchiarotti B. & Sartoretto F. (1998) Numerical approximation for functionals of reflecting diffusion processes. SIAM J. Appl. Math. 58 (1), 73102.
[22] Crisan D. & Manolarakis K. (2010) Probabilistic methods for semilinear partial differential equations. Applications to finance. Math. Modelling Numer. Anal. 44 (5), 1107.
[23] Cruzeiro A. B. & Shamarova E. (2009) Navier–Stokes equations and forward–backward SDEs on the group of diffeomorphisms of a torus. Stoch. Process. Appl. 119 (12), 40344060.
[24] Dancer E. N. & Du Y. H. (1994) Competing species equations with diffusion, large interactions, and jumping nonlinearities. J. Differ. Equ. 114 (2), 434475.
[25] Doumbia M., Oudjane N., & Warin X. (2017) Unbiased Monte Carlo estimate of stochastic differential equations expectations. ESAIM: Probability and Statistics 21, 5687.
[26] Dynkin E. B. (2004) Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations, University Lecture Series, Vol. 34, American Mathematical Society, Providence, RI. Appendix A by J.-F. Le Gall and Appendix B by I. E. Verbitsky.
[27] El Karoui N., Kapoudjian C., Pardoux E., Peng S. & Quenez M. C. (1997) Reflected solutions of backward SDEs, and related obstacle problems for PDEs. Ann. Probab. 25 (2), 702737.
[28] El Karoui N., Peng S. & Quenez M. C. (1997) Backward stochastic differential equations in finance. Math. Finance 7 (1), 171.
[29] Escher J. & Matioc A.-V. (2010) Radially symmetric growth of nonnecrotic tumors. Nonlinear Differ. Equ. Appl. NoDEA 17 (1), 120.
[30] Fahim A., Touzi N. & Warin X. (2011) A probabilistic numerical method for fully nonlinear parabolic PDEs. Ann. Appl. Probab. 21 (4), 13221364.
[31] Fisher R. A. (1937) The wave of advance of advantageous genes. Ann. eugenics 7 (4), 355369.
[32] Frei C. & dos Reis G. (2013) Quadratic FBSDE with generalized Burgers' type nonlinearities, perturbations and large deviations. Stoch. Dynam. 13 (2), 1250015.
[33] Freidlin M. (1985) Functional integration and Partial Differential Equations, Annals of Mathematics Studies, Vol. 109, Princeton University Press, Princeton, NJ.
[34] Giles M. B. & Bernal F. (2017) Multilevel estimation of expected exit times and other functionals of stopped diffusions. Submitted.
[35] Gobet E. (2001) Euler schemes and half-space approximation for the simulation of diffusion in a domain. ESAIM Probab. Statist. 5, 261297.
[36] Gobet E. (2016) Monte–Carlo Methods and Stochastic Processes: From Linear to Non-Linear, CRC Press.
[37] Gobet E., Liu G. & Zubelli J. (2016) A non-intrusive stratified resampler for regression Monte Carlo: Application to solving non-linear equations. hal-01291056.
[38] Gobet E. & Maire S. (2005) Sequential Monte Carlo domain decomposition for the Poisson equation. In: Proceedings of the 17th IMACS World Congress, Scientific Computation, Applied Mathematics and Simulation (11–15 July 2005, Paris).
[39] Gobet E. & Menozzi S. (2010) Stopped diffusion processes: Boundary corrections and overshoot. Stoch. Process. Appl. 120 (2), 130162.
[40] Guyon J. & Henry-Labordère P. (2013) Nonlinear Option Pricing, CRC Press.
[41] Henry-Labordere P. (2012) Counterparty risk valuation: A marked branching diffusion approach. Available at SSRN: https://ssrn.com/abstract=1995503.
[42] Henry-Labordere P., Oudjane N., Tan X., Touzi N. & Warin X. (2016) Branching diffusion representation of semilinear PDEs and Monte Carlo approximation. arXiv:1603.01727.
[43] Henry-Labordere P., Tan X. & Touzi N. (2014) A numerical algorithm for a class of BSDEs via the branching process. Stoch. Process. Appl. 124 (2), 11121140.
[44] Higham D. J., Mao X., Roj M., Song, Q. & Yin G. (2013) Mean exit times and the multilevel Monte Carlo method. SIAM/ASA J. Uncertain. Quantification 1 (1), 218.
[45] Karatzas I. & Shreve S. (1991) Brownian Motion and Stochastic Calculus, Vol. 113, Springer-Verlag, New York.
[46] Kloeden P. E. & Platen E. (1992) Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), Vol. 23, Springer-Verlag, Berlin.
[47] Kolmogorov A. N., Petrovsky I. G. & Piskunov N. S. (1937) Étude de l'équation de la diffusion avec croissance de la quantité de matiere et son application a un probleme biologique. Moscow Univ. Math. Bull 1 (1–25), 129.
[48] Lionnet A., dos Reis G. & Szpruch L. (2015) Time discretization of FBSDE with polynomial growth drivers and reaction–diffusion PDEs. Ann. Appl. Probab. 25 (5), 25632625.
[49] Lionnet A., dos Reis G. & Szpruch L. (2016) Convergence and properties of modified explicit schemes for BSDEs with polynomial growth. arXiv:1607.06733.
[50] Ma J. & Yong J. (1999) Forward-Backward Stochastic Differential Equations and Their Applications, Lecture Notes in Mathematics, Vol. 1702, Springer-Verlag, Berlin.
[51] McKean H. P. (1975) Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28 (3), 323331.
[52] Mendes R. V. (2010) Poisson–Vlasov in a strong magnetic field: A stochastic solution approach. J. Math. Phys. 51 (4), 043101.
[53] Milstein G. N. & Tretyakov M. V. (2004) Stochastic Numerics for Mathematical Physics, Springer-Verlag, Berlin.
[54] Pardoux É. & Peng S. (1992) Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Stochastic partial differential equations and their Applications (Charlotte, NC, 1991), Lec. Notes in Control and Inform. Sci., Vol. 176, Springer, Berlin, pp. 200217.
[55] Peng S. (1991) Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37 (1–2), 6174.
[56] Rasulov A., Raimova G. & Mascagni M. (2010) Monte Carlo solution of Cauchy problem for a nonlinear parabolic equation. Math. Comput. Simul. 80 (6), 11181123.
[57] Skorokhod A. V. (1964) Branching diffusion processes. Teor. Verojatnost. i Primenen. 9 (3), 492497.
[58] Smith B., Bjorstad P. & Gropp W. (2004) Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge, Cambridge University Press.
[59] Struwe M. (1996) Geometric evolution problems. In: Nonlinear Partial Differential Equations in Differential Geometry (Park City, UT, 1992). IAS/Park City Math. Ser., Vol. 2, Amer. Math. Soc., Providence, RI, pp. 257339.
[60] Warin X. (2017) Variations on branching methods for nonlinear PDEs. arXiv:1701.07660.
[61] Watanabe S. (1965) On the branching process for Brownian particles with an absorbing boundary. J. Math. Kyoto Univ. 4 (2), 385398.
[62] Xu Y. (2015) A complex Feynman-Kac formula via linear backward stochastic differential equations. arXiv:1505.03590.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 141 *
Loading metrics...

* Views captured on Cambridge Core between 22nd May 2017 - 21st November 2017. This data will be updated every 24 hours.