[1]
Acebrón J. A., Busico M. P., Lanucara P. & Spigler R. (2005a) Domain decomposition solution of elliptic boundary-value problems via Monte Carlo & quasi-Monte Carlo methods. SIAM J. Sci. Comput.
27
(2), 440–457.

[2]
Acebrón J. A., Busico M. P., Lanucara P. & Spigler R. (2005b) Probabilistically induced domain decomposition methods for elliptic boundary-value problems. J. Comput. Phys.
210
(2), 421–438.

[3]
Acebrón J. A. & Ribeiro M. A. (2016) A Monte Carlo method for solving the one-dimensional Telegraph equations with boundary conditions.
J. Comput. Phys.
305, 29–43.

[4]
Acebrón J. A. & Rodríguez-Rozas Á. (2011) A new parallel solver suited for arbitrary semilinear parabolic partial differential equations based on generalized random trees. J. Comput. Phys.
230
(21), 7891–7909.

[5]
Acebrón J. A. & Rodríguez-Rozas Á. (2013) Highly efficient numerical algorithm based on random trees for accelerating parallel Vlasov–Poisson simulations.
J. Comput. Phys.
250, 224–245.

[6]
Acebrón J. A., Rodríguez-Rozas Á. & Spigler R. (2009) Domain decomposition solution of nonlinear two-dimensional parabolic problems by random trees. J. Comput. Phys.
228
(15), 5574–5591.

[7]
Acebrón J. A., Rodríguez-Rozas Á. & Spigler R. (2010a) Efficient parallel solution of nonlinear parabolic partial differential equations by a probabilistic domain decomposition. J. Sci. Comput.
43
(2), 135–157.

[8]
Acebrón J. A., Rodríguez-Rozas, Á. & Spigler R. (2010b) A fully scalable algorithm suited for petascale computing and beyond. Comput. Sci. Res. Dev.
25
(1–2), 115–121.

[9]
Agarwal A. & Claisse J. (2017) Branching diffusion representation of quasi-linear elliptic pdes and estimation using monte carlo method. *preprint, arXiv:1704.00328*.

[10]
Benth F. E., Karlsen K. H. & Reikvam K. (2003) A semilinear Black and Scholes partial differential equation for valuing American options. Finance Stoch.
7
(3), 277–298.

[11]
Bernal F. & Acebrón J. A. (2016a) A comparison of higher-order weak numerical schemes for stopped stochastic differential equations. Comm. Comput. Phys.
20
(3), 703–732.

[12]
Bernal F. & Acebrón J. A. (2016b) A multigrid-like algorithm for probabilistic domain decomposition. Comput. Math.Appl.
72
(7), 1790–1810.

[13]
Bernal F., Acebrón J. A. & Anjam I. (2014) A stochastic algorithm based on fast marching for automatic capacitance extraction in non-Manhattan geometries. SIAM J. Imag. Sci.
7
(4), 2657–2674.

[14]
Bihlo A. & Haynes R. D. (2014) Parallel stochastic methods for PDE based grid generation. Comput. Math. Appl.
68
(8), 804–820.

[15]
Bihlo A. & Haynes R. D. (2016) A stochastic domain decomposition method for time dependent mesh generation. In: Domain Decomposition Methods in Science and Engineering XXII. Dickopf T., Gander M. J., Halpern L., Krause R., & Pavarino L. F. (editors), Springer, Vol. 104, pp. 107–115.

[16]
Bihlo A., Haynes R. D. & Walsh E. (2015) Stochastic domain decomposition for time dependent adaptive mesh generation. J. Math. Stud.
48
(2), 106–124.

[17]
Bossy M., Champagnat N., Leman H., Maire S., Violeau L. & Yvinec M. (2015) Monte Carlo methods for linear and non-linear Poisson-Boltzmann equation.
ESAIM: Proc. Surv.
48, 420–446.

[18]
Bouchard B., Elie R. & Touzi N. (2009) Discrete-time approximation of BSDEs and probabilistic schemes for fully nonlinear PDEs. In: Advanced Financial Modelling, Albrecher H., Runggaldier W. J. & Schachermayer W. (editors), Radon Ser. Comput. Appl. Math., Vol. 8, Walter de Gruyter, Berlin, pp. 91–124.

[19]
Bouchard B., Tan X. & Zou Y. (2016) Numerical approximation of BSDEs using local polynomial drivers and branching processes. *arXiv:1612.06790*.

[20]
Cheridito P., Soner H. M., Touzi N. & Victoir N. (2007) Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Comm. Pure Appl. Math.
60
(7), 1081–1110.

[21]
Costantini C., Pacchiarotti B. & Sartoretto F. (1998) Numerical approximation for functionals of reflecting diffusion processes. SIAM J. Appl. Math.
58
(1), 73–102.

[22]
Crisan D. & Manolarakis K. (2010) Probabilistic methods for semilinear partial differential equations. Applications to finance. Math. Modelling Numer. Anal.
44
(5), 1107.

[23]
Cruzeiro A. B. & Shamarova E. (2009) Navier–Stokes equations and forward–backward SDEs on the group of diffeomorphisms of a torus. Stoch. Process. Appl.
119
(12), 4034–4060.

[24]
Dancer E. N. & Du Y. H. (1994) Competing species equations with diffusion, large interactions, and jumping nonlinearities. J. Differ. Equ.
114
(2), 434–475.

[25]
Doumbia M., Oudjane N., & Warin X. (2017) Unbiased Monte Carlo estimate of stochastic differential equations expectations.
ESAIM: Probability and Statistics
21, 56–87.

[26]
Dynkin E. B. (2004) Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations, University Lecture Series, Vol. 34, American Mathematical Society, Providence, RI. Appendix A by J.-F. Le Gall and Appendix B by I. E. Verbitsky.

[27]
El Karoui N., Kapoudjian C., Pardoux E., Peng S. & Quenez M. C. (1997) Reflected solutions of backward SDEs, and related obstacle problems for PDEs. Ann. Probab.
25
(2), 702–737.

[28]
El Karoui N., Peng S. & Quenez M. C. (1997) Backward stochastic differential equations in finance. Math. Finance
7
(1), 1–71.

[29]
Escher J. & Matioc A.-V. (2010) Radially symmetric growth of nonnecrotic tumors. Nonlinear Differ. Equ. Appl. NoDEA
17
(1), 1–20.

[30]
Fahim A., Touzi N. & Warin X. (2011) A probabilistic numerical method for fully nonlinear parabolic PDEs. Ann. Appl. Probab.
21
(4), 1322–1364.

[31]
Fisher R. A. (1937) The wave of advance of advantageous genes. Ann. eugenics
7
(4), 355–369.

[32]
Frei C. & dos Reis G. (2013) Quadratic FBSDE with generalized Burgers' type nonlinearities, perturbations and large deviations. Stoch. Dynam.
13
(2), 1250015.

[33]
Freidlin M. (1985) Functional integration and Partial Differential Equations, Annals of Mathematics Studies, Vol. 109, Princeton University Press, Princeton, NJ.

[34]
Giles M. B. & Bernal F. (2017) Multilevel estimation of expected exit times and other functionals of stopped diffusions. Submitted.

[35]
Gobet E. (2001) Euler schemes and half-space approximation for the simulation of diffusion in a domain.
ESAIM Probab. Statist.
5, 261–297.

[36]
Gobet E. (2016) Monte–Carlo Methods and Stochastic Processes: From Linear to Non-Linear, CRC Press.

[37]
Gobet E., Liu G. & Zubelli J. (2016) A non-intrusive stratified resampler for regression Monte Carlo: Application to solving non-linear equations. hal-01291056.

[38]
Gobet E. & Maire S. (2005) Sequential Monte Carlo domain decomposition for the Poisson equation. In: *Proceedings of the 17th IMACS World Congress, Scientific Computation, Applied Mathematics and Simulation* (11–15 July 2005, Paris).

[39]
Gobet E. & Menozzi S. (2010) Stopped diffusion processes: Boundary corrections and overshoot. Stoch. Process. Appl.
120
(2), 130–162.

[40]
Guyon J. & Henry-Labordère P. (2013) Nonlinear Option Pricing, CRC Press.

[42]
Henry-Labordere P., Oudjane N., Tan X., Touzi N. & Warin X. (2016) Branching diffusion representation of semilinear PDEs and Monte Carlo approximation. *arXiv:1603.01727*.

[43]
Henry-Labordere P., Tan X. & Touzi N. (2014) A numerical algorithm for a class of BSDEs via the branching process. Stoch. Process. Appl.
124
(2), 1112–1140.

[44]
Higham D. J., Mao X., Roj M., Song, Q. & Yin G. (2013) Mean exit times and the multilevel Monte Carlo method. SIAM/ASA J. Uncertain. Quantification
1
(1), 2–18.

[45]
Karatzas I. & Shreve S. (1991) Brownian Motion and Stochastic Calculus, Vol. 113, Springer-Verlag, New York.

[46]
Kloeden P. E. & Platen E. (1992) Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), Vol. 23, Springer-Verlag, Berlin.

[47]
Kolmogorov A. N., Petrovsky I. G. & Piskunov N. S. (1937) Étude de l'équation de la diffusion avec croissance de la quantité de matiere et son application a un probleme biologique. Moscow Univ. Math. Bull
1
(1–25), 129.

[48]
Lionnet A., dos Reis G. & Szpruch L. (2015) Time discretization of FBSDE with polynomial growth drivers and reaction–diffusion PDEs. Ann. Appl. Probab.
25
(5), 2563–2625.

[49]
Lionnet A., dos Reis G. & Szpruch L. (2016) Convergence and properties of modified explicit schemes for BSDEs with polynomial growth. arXiv:1607.06733.

[50]
Ma J. & Yong J. (1999) Forward-Backward Stochastic Differential Equations and Their Applications, Lecture Notes in Mathematics, Vol. 1702, Springer-Verlag, Berlin.

[51]
McKean H. P. (1975) Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math.
28
(3), 323–331.

[52]
Mendes R. V. (2010) Poisson–Vlasov in a strong magnetic field: A stochastic solution approach. J. Math. Phys.
51
(4), 043101.

[53]
Milstein G. N. & Tretyakov M. V. (2004) Stochastic Numerics for Mathematical Physics, Springer-Verlag, Berlin.

[54]
Pardoux É. & Peng S. (1992) Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Stochastic partial differential equations and their Applications (Charlotte, NC, 1991), Lec. Notes in Control and Inform. Sci., Vol. 176, Springer, Berlin, pp. 200–217.

[55]
Peng S. (1991) Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep.
37
(1–2), 61–74.

[56]
Rasulov A., Raimova G. & Mascagni M. (2010) Monte Carlo solution of Cauchy problem for a nonlinear parabolic equation. Math. Comput. Simul.
80
(6), 1118–1123.

[57]
Skorokhod A. V. (1964) Branching diffusion processes. Teor. Verojatnost. i Primenen.
9
(3), 492–497.

[58]
Smith B., Bjorstad P. & Gropp W. (2004) Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge, Cambridge University Press.

[59]
Struwe M. (1996) Geometric evolution problems. In: Nonlinear Partial Differential Equations in Differential Geometry (Park City, UT, 1992). IAS/Park City Math. Ser., Vol. 2, Amer. Math. Soc., Providence, RI, pp. 257–339.

[60]
Warin X. (2017) Variations on branching methods for nonlinear PDEs. *arXiv:1701.07660*.

[61]
Watanabe S. (1965) On the branching process for Brownian particles with an absorbing boundary. J. Math. Kyoto Univ.
4
(2), 385–398.

[62]
Xu Y. (2015) A complex Feynman-Kac formula via linear backward stochastic differential equations. *arXiv:1505.03590*.