Skip to main content Accesibility Help
×
×
Home

Integral constraints in multiple-scales problems

  • S. J. CHAPMAN (a1) and S. E. MCBURNIE (a1)
Abstract

Asymptotic homogenisation via the method of multiple scales is considered for problems in which the microstructure comprises inclusions of one material embedded in a matrix formed from another. In particular, problems are considered in which the interface conditions include a global balance law in the form of an integral constraint; this may be zero net charge on the inclusion, for example. It is shown that for such problems care must be taken in determining the precise location of the interface; a naive approach leads to an incorrect homogenised model. The method is applied to the problems of perfectly dielectric inclusions in an insulator, and acoustic wave propagation through a bubbly fluid in which the gas density is taken to be negligible.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Integral constraints in multiple-scales problems
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Integral constraints in multiple-scales problems
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Integral constraints in multiple-scales problems
      Available formats
      ×
Copyright
References
Hide All
[1]Bensoussan, A., Lions, J.-L. & Papanicolaou, G. (1978) Asymptotic Analysis for Periodic Structures, Studies in Mathematics and Its Applications, Vol. 5, North-Holland Publishing Company, Amsterdam.
[2]Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C. & Ting, L. (1985) Wave propagation in bubbly liquids at finite volume fraction. J. Fluid. Mech. 160, 114.
[3]Davit, Y., Bell, C. G., Byrne, H. M., Chapman, L. A. C., Kimpton, L. S., Lang, G. E., Leonard, K. H. L., Oliver, J. M., Pearson, N. C., Shipley, R. J., Waters, S. L., Whiteley, J. P., Wood, B. D. & Quintard, M. (2013) Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare? Adv. Water Resour. 62, 178206.
[4]Hashin, Z. & Shtrikman, S. (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125.
[5]Hinch, E. J. (1991) Perturbation Methods, Cambridge University Press.
[6]Kevorkian, J. K. & Cole, J. D. (1981) Perturbation Methods in Applied Mathematics, Springer-Verlag, Berlin.
[7]Pavliotis, G. A. & Stuart, A. M. (2008) Multiscale Methods: Averaging and Homogenization, Springer Science + Business Media, LLC.
[8]Torquato, S. (1991) Random heterogeneous media: Microstructure and improved bounds on effective properties. Appl. Mech. Rev. 44, 37.
[9]Torquato, S. (2000) Modeling of physical properties of composite materials. Int. J. Solids Struct. 37, 411422.
[10]Whitaker, S. (1999) The Method of Volume Averaging, Theory and Applications of Transport in Porous Media, Vol. 13, Springer Science + Business Media, Dordrecht.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed