Skip to main content
×
Home
    • Aa
    • Aa

Interpolation of spatial data – A stochastic or a deterministic problem?

  • M. SCHEUERER (a1), R. SCHABACK (a2) and M. SCHLATHER (a3)
Abstract

Interpolation of spatial data is a very general mathematical problem with various applications. In geostatistics, it is assumed that the underlying structure of the data is a stochastic process which leads to an interpolation procedure known as kriging. This method is mathematically equivalent to kernel interpolation, a method used in numerical analysis for the same problem, but derived under completely different modelling assumptions. In this paper we present the two approaches and discuss their modelling assumptions, notions of optimality and different concepts to quantify the interpolation accuracy. Their relation is much closer than has been appreciated so far, and even results on convergence rates of kernel interpolants can be translated to the geostatistical framework. We sketch different answers obtained in the two fields concerning the issue of kernel misspecification, present some methods for kernel selection and discuss the scope of these methods with a data example from the computer experiments literature.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] E. Anderes (2010) On the consistent separation of scale and variance for Gaussian random fields. Ann. Statist. 38 (2), 870893.

[2] J. L. Anderson (1996) A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Clim. 9, 15181530.

[3] S. Banerjee , A. E. Gelfand , A. O. Finley & H. Sang (2008) Gaussian predictive process models for large spatial datasets. J. R. Statist. Soc B 70 (4), 825848.

[4] A. Berlinet & C. Thomas-Agnan (2004) Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Berlin, Germany.

[5] P. Caragea & R. L. Smith (2007) Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models. J. Multivariate Anal. 98 (7), 14171440.

[6] R. E. Carlson & T. A. Foley (1991) The parameter R2 in multiquadric interpolation. Comp. Math. Appl. 21, 2942.

[8] J.-P. Chilès (1976) How to adapt kriging to non-classical problems: three case studies. In: M. Guarascio , M. David & C. Huijbregts (editors), Advanced Geostatistics in the Mining Industry, D. Reidel, Dordrecht, Holland, pp. 6989.

[10] N. Cressie (1989) Geostatistics. Am. Stat. 43 (4), 197202.

[12] N. Cressie & G. Johannesson (2008) Fixed rank kriging for very large spatial data sets. J. R. Statist. Soc B 70 (1), 209226.

[13] R. Dahlhaus & H. R. Künsch (1987) Edge effects and efficient parameter estimation for stationary random fields. Biometrika 74 (4), 877882.

[15] S. de Marchi & R. Schaback (2010) Stability of kernel-based interpolation. Adv. Comput. Math. 32, 155161.

[16] S. de Marchi , R. Schaback & H. Wendland (2005) Near-optimal data-independent point locations for radial basis functions. Adv. Comput. Math. 23 (3), 317330.

[19] J. Duchon (1977) Splines minimizing rotation invariant seminorms in Sobolev spaces. In: W. Schempp & K. Zeller (editors), Constructive Theory of Functions of Several Variables, Springer-Verlag, Berlin, Germay, pp. 85100.

[23] G. E. Fasshauer (2007) Meshfree Approximation Methods with Matlab, World Scientific, Singapore.

[24] G. E. Fasshauer & J. G. Zhang (2007) On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45, 345368.

[25] T. A. Foley (1987) Interpolation and approximation of 3-D and 4-D scattered data. Comput. Math. Appl. 13, 711740.

[26] B. Fornberg , T. A. Driscoll , G. Wright & R. Charles (2002) Observations on the behaviour of radial basis function approximations near boundaries. Comput. Math. Appl. 43, 473490.

[28] R. Franke (1982) Scattered data interpolation: Tests of some methods. Math. Comput. 38, 181200.

[29] M. Fuentes (2008) Approximate likelihood for large irregular spaced spatial data. J. Am. Stat. Assoc. 102 (477), 321331.

[30] R. Furrer , M. G. Genton & D. Nychka (2006) Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Stat. 15 (3), 502523.

[31] T. Gneiting & M. Schlather (2004) Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46 (2), 269282.

[32] X. Guyon (1982) Parameter estimation for a stationary process on a d-dimensional lattice. Biometrika 69 (1), 95105.

[33] M. S. Handcock & M. L. Stein (1993) A Bayesian analysis of kriging. Technometrics 35 (4), 403410.

[34] M. S. Handcock & J. R. Wallis (1994) An approach to statistical spatial-temporal modeling of meteorological fields (with discussion). J. Am. Stat. Assoc. 89 (7), 368390.

[35] R. L. Hardy (1971) Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 19051915.

[36] D. A. Harville (1974) Bayesian inference for variance components using only error contrasts. Biometrika 61, 383385.

[37] C. C. Heyde (1997) Quasi-Likelihood and Its Application, Springer, New York.

[38] I. A. Ibragimov & Y. A. Rozanov (1978) Gaussian Random Processes, A. B. Aries (trans.), Springer, New York.

[40] V. R. Joseph , Y. Hung & A. Sudjianto (2008) Blind kriging: A new method for developing metamodels. J. Mech. Des. 130 (3), 18.

[42] G. S. Kimeldorf & G. Wahba (1970) A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat. 41 (2), 495502.

[43] P. K. Kitanidis (1983) Statistical estimation of polynomial generalized covariance functions and hydrologic applications. Water Resour. Res. 19 (4), 909921.

[44] P. K. Kitanidis (1997) Introduction to Geostatistics: Applications in Hydrology, Cambridge University Press, New York.

[46] S. C. Lim & L. P. Teo (2010) Analytic and asymptotic properties of multivariate generalized Linniks probability densities. J. Fourier Anal. Appl. 16, 715747.

[47] F. Lindgren , H. Rue & J. Lindström (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc B 73 (4), 423498.

[49] K. V. Mardia & R. J. Marshall (1984) Maximum likelihood estimation of models for residual covariance in spatial statistics. Biometrika 71, 135146.

[50] B. Matérn (1986) Spatial Variation, 2nd ed., Lecture Notes in Statistics, Vol. 36, Springer-Verlag, Berlin, Germany.

[52] G. Matheron (1973) The intrinsic random functions and their applications. Adv. Appl. Prob. 5, 439468.

[54] G. Matheron (1976) A simple substitute for conditional expectation: The disjunctive kriging. In: M. Guarascio , M. David & C. Huijbregts (editors), Advanced Geostatistics in the Mining Industry, Reidel, Dordrecht, Netherland, pp. 221236.

[55] C. A. Micchelli (1986) Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constr. Approx. 2, 1122.

[56] M. D. Morris , T. J. Mitchell & D. Ylvisaker (1993) Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction. Technometrics 35 (3), 243255.

[57] D. E. Myers (1992) Kriging, cokriging, radial basis functions and the role of positive definiteness. Comput. Math. Appl. 24 (12), 139148.

[58] F. J. Narcowich , J. D. Ward & H. Wendland (2006) Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx. 24, 175186.

[59] H. Omre & K. B. Halvorsen (1989) The Bayesian bridge between simple and universal kriging. Math. Geol. 21 (7), 767786.

[60] H. Putter & G. A. Young (2001) On the effect of covariance function estimation on the accuracy of kriging predictors. Bernoulli 7 (3), 421438.

[63] S. Rippa (1999) An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11, 193210.

[64] K. Ritter (2000) Average-Case Analysis of Numerical Problems, Lecture Notes in Mathematics, No. 1733, Springer, New York.

[66] R. Schaback (1995) Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251264.

[68] R. Schaback (2011) The missing Wendland functions. Adv. Comput. Math. 34, 6781.

[71] M. Scheuerer (2010) Regularity of the sample paths of a general second-order random field. Stoch. Proc. Appl. 120, 18791897.

[72] M. Scheuerer (2011) An alternative procedure for selecting a good value for the parameter c in RBF-interpolation. Adv. Comput. Math. 34 (1), 105126.

[74] M. Seeger (2004) Gaussian processes for machine learning. Int. J. Neural Syst. 14, 138.

[75] M. L. Stein (1988) Asymptotically efficient prediction of a random field with a misspecified covariance function. Ann. Stat. 16, 5563.

[76] M. L. Stein (1990) A comparison of generalized cross validation and modified maximum likelihood for estimating the parameters of a stochastic process. Ann. Stat. 18 (3), 11391157.

[77] M. L. Stein (1999) Interpolation of Spatial Data, Springer, New York.

[78] M. L. Stein (2004) Equivalence of Gaussian measures for some nonstationary random fields. J. Stat. Plann. Inference 123, 111.

[79] M. L. Stein , Z. Chi & L. J. Welty (2004) Approximating likelihoods for large spatial data sets. J. R. Stat. Soc B 66 (2), 275296.

[82] G. Wahba (1985) A comparison of gcv and gml for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Stat. 13 (1), 13781402.

[83] G. Wahba (1990) Spline Models for Observational Data, SIAM, Philadelphia, PA.

[84] H. Wendland (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389396.

[86] H. Wendland & C. Rieger (2005) Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101, 729748.

[88] H. Zhang (2004) Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics. J. Am. Stat. Assoc. 99, 250261.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 28 *
Loading metrics...

Abstract views

Total abstract views: 200 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th September 2017. This data will be updated every 24 hours.