Skip to main content Accesibility Help

Mathematics of thermoacoustic tomography


The article presents a survey of mathematical problems, techniques and challenges arising in thermoacoustic tomography and its sibling photoacoustic tomography.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mathematics of thermoacoustic tomography
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mathematics of thermoacoustic tomography
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mathematics of thermoacoustic tomography
      Available formats
Hide All
[1]Agranovsky, M. (1997) Radon transform on polynomial level sets and related problems. Israel Math. Conf. Proc. 11, 121.
[2]Agranovsky, M. (2000) On a problem of injectivity for the Radon transform on a paraboloid. Analysis, geometry, number theory: The mathematics of Leon Ehrenpreis In: Contemp. Math. 251, AMS, Providence, RI, pp. 1–14.
[3]Agranovsky, M., Berenstein, C. & Kuchment, P. (1996) Approximation by spherical waves in L p-spaces. J. Geom. Anal. 6 (3), 365383.
[4]Agranovsky, M. & Kuchment, P. (2007) Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inv. Prob. 23, 20892102.
[5]Agranovsky, M., Kuchment, P. & Kunyansky, L. (2007) On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography. To appear in CRC.
[6]Agranovsky, M., Kuchment, P. & Quinto, E. T. (2007) Range descriptions for the spherical mean Radon transform. J. Funct. Anal. 248, 344386.
[7]Agranovsky, M. & Quinto, E. T. (1996) Injectivity sets for the Radon transform over circles and complete systems of radial functions. J Funct. Anal. 139, 383414.
[8]Agranovsky, M. & Quinto, E. T. (2001) Geometry of stationary sets for the wave equation in IRn: The case of finitely suported initial data. Duke Math. J. 107 (1), 5784.
[9]Agranovsky, M. & Quinto, E. T. (2003) Stationary sets for the wave equation in crystallographic domains. Trans. AMS 355 (6), 24392451.
[10]Agranovsky, M. & Quinto, E. T. (2006) Remarks on stationary sets for the wave equation. Integral Geom. Tomography, Contemp. Math. 405, 111.
[11]Agranovsky, M., Volchkov, V. V. & Zalcman, L. (1999) Conical uniqueness sets for the spherical Radon transform. Bull. London Math. Soc. 31 (4), 363372.
[12]Ambartsoumian, G. & Kuchment, P. (2005) On the injectivity of the circular Radon transform. Inv. Prob. 21, 473485.
[13]Ambartsoumian, G. & Kuchment, P. (2006) A range description for the planar circular Radon transform. SIAM J. Math. Anal. 38 (2), 681692.
[14]Ambartsoumian, G. & Patch, S. (2007) Thermoacoustic tomography: Numerical results. In: Alexander A. Oraevsky, Lihong V. Wang (editors) Proceedings of SPIE 6437, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, p. 64371B, SPIE-International Society for Optical Engine, Bellingham, Washington.
[15]Anastasio, M. A.Zhang, J.Modgil, D. & Rivière, P. J. (2007) Application of inverse source concepts to photoacoustic tomography, Inv. Prob. 23, S21S35.
[16]Anastasio, M., Zhang, J., Pan, X., Zou, Y., Ku, G. & Wang, L. V. (2005) Half-time image reconstruction in thermoacoustic tomography. IEEE Trans. Med. Imaging 24, 199210.
[17]Anastasio, M. A.Zhang, J.Sidky, E. Y.Yu Zou, Dan Xia & Xiaochuan. (2005). Feasibility of half-data image reconstruction in 3D reflectivity tomography with a spherical aperture, IEEE Trans. Med. Imaging 24 (9), 11001112.
[18]Andersson, L.-E. (1988) On the determination of a function from spherical averages. SIAM J. Math. Anal. 19 (1), 214232.
[19]Andreev, V. G., Popov, D. A., Sushko, D. V., Karabutov, A. A. & Oraevsky, A. A. (2002) Image reconstruction in 3D optoacoustic tomography system with hemispherical transducer array. In: Proc. SPIE 4618, p. 1605-7422/02.
[20]Asgeirsson, L. (1937) Über eine Mittelwerteigenschaft von Lösungen homogener linearer partieller Differentialgleichungen zweiter Ordnung mit konstanten Koeffizienten. Ann. Math. 113, 321346.
[21]Beylkin, G. (1984) The inversion problem and applications of the generalized Radon transform. Comm. Pure Appl. Math. 37, 579599.
[22]Burgholzer, P., Grün, H., Haltmeier, M., Nuster, R. & Paltauf, G. (2007) Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors using time reversal. In: Proceedings SPIE number 6437.75 Photonics West, BIOS 2007, San Jose, CA.
[23]Burgholzer, P., Hofer, C., Matt, G. J.Paltauf, G.Haltmeier, M. & Scherzer, O. (2006) Thermoacoustic tomography using a fiber-based Fabry-Perot interferometer as an integrating line detector. In: Proc. SPIE 6086, pp. 434–442.
[24]Burgholzer, P., Hofer, C., Paltauf, G., Haltmeier, M. & Scherzer, O. (2005) Thermoacoustic tomography with integrating area and line detectors. IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control 52 (9), 15771583.
[25]Burgholzer, P., Matt, G., Haltmeier, M. & Patlauf, G. (2007) Exact and approximate imaging methods for photoacoustic tomography using an arbitrary detection surface. Phys. Rev. E 75, 046706.
[26]Clason, C. & Klibanov, M. (2007) The quasi-reversibility method in thermoacoustic tomography in a heterogeneous medium. SIAM J. Sci. Comput. 30, 123.
[27]Copland, J. A. et al. . (2004) Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography. Mol. Imaging Biol. 6 (5), 341349.
[28]Courant, R. & Hilbert, D. (1962) Methods of Mathematical Physics, Vol. II: Partial Differential Equations, Interscience, New York.
[29]Cox, B. T., Arridge, S. R. & Beard, P. C. (2007). Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity. Inv. Prob. 23, S95S112.
[30]Denisjuk, A. (1999) Integral geometry on the family of semi-spheres. Fract. Calc. Appl. Anal. 2 (1), 3146.
[31]Devaney, A. J. & Beylkin, G. (1984) Diffraction tomography using arbitrary transmitter and receiver surfaces. Ultrasonic Imaging 6, 181193.
[32]Diebold, G. J.Sun, T. & Khan, M. I. (1991) Photoacoustic monopole radiation in one, two, and three dimensions. Phys. Rev. Lett. 67 (24), 33843387.
[33]Egorov, Yu. V. & Shubin, M. A. (1992) Partial Differential Equations I. Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 30, 1259.
[34]Ehrenpreis, L. (2003) The Universality of the Radon Transform, Oxford University Press, Oxford.
[35]Fawcett, J. A. (1985) Inversion of n-dimensional spherical averages. SIAM J. Appl. Math. 45 (2), 336341.
[36]Finch, D. V. (2005) On a thermoacoustic transform. In: Proc. Fully 3D Reconstruction Radiology Nuclear Medicine, Salt Lake City, 5–9 July 2005. Available online at
[37]Finch, D., Haltmeier, M. & Rakesh (2007) Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68 (2), 392412.
[38]Finch, D., Patch, S. & Rakesh (2004) Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35 (5), 12131240.
[39]Finch, D. & Rakesh (2006) The range of the spherical mean value operator for functions supported in a ball. Inv. Prob. 22, 923938.
[40]Finch, D. & Rakesh (2007) Recovering a function from its spherical mean values in two and three dimensions. To appear in CRC.
[41]Finch, D. & Rakesh (2007) The spherical mean value operator with centers on a sphere. Inv. Prob. 23 (6), S37S50.
[42]Flatto, L., Newman, D. J. & Shapiro, H. S. (1966) The level curves of harmonic functions. Trans. Amer. Math. Soc. 123, 425436.
[43]Gelfand, I., Gindikin, S. & Graev, M. (1980) Integral geometry in affine and projective spaces. J. Sov. Math. 18, 39167.
[44]Gelfand, I., Gindikin, S. & Graev, M. (2003) Selected Topics in Integral Geometry. Transl. Math. Monogr. vol. 220, AMS, Providence, RI.
[45]Gelfand, I., Graev, M. & Vilenknin, N. (1965) Generalized Functions, vol. 5: Integral Geometry and Representation Theory, Academic Press, New York.
[46]Georgieva-Hristova, Y.Kuchment, P. & Nguyen, L. (2007) On reconstruction and time reversal in thermoacoustic tomography, preprint.
[47]Gindikin, S. (1995) Integral geometry on real quadrics. In: Lie groups and Lie algebras: E. B. Dynkin's Seminar, Amer. Math. Soc. Transl. Ser. 2, 169, AMS, Providence, RI, pp. 23–31.
[48]Greenleaf, A. & Uhlmann, G. (1990) Microlocal techniques in integral geometry. Contemp. Math. 113, 149155.
[49]Grün, H., Haltmeier, M., Paltauf, G. & Burgholzer, P. (2007) Photoacoustic tomography using a fiber based Fabry-Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method. In: Proc. SPIE, 6631, p. 663107.
[50]Guillemin, V. (1975) Fourier integral operators from the Radon transform point of view. Proc. Symposia Pure Math. 27, 297300.
[51]Guillemin, V. (1985) On some results of Gelfand in integral geometry. Proc. Symposia Pure Math. 43, 149155.
[52]Guillemin, V. & Sternberg, S. (1977) Geometric Asymptotics. AMS, Providence, RI.
[53]Gusev, V. E. & Karabutov, A. A. (1993) Laser Optoacoustics, American Institute of Physics, New York.
[54]Haltmeier, M., Burgholzer, P., Hofer, C., Paltauf, G., Nuster, R. & Scherzer, O. (2005) Thermoacoustic tomography using integrating line detectors. Ultrasonics Symp. 1, 166169.
[55]Haltmeier, M., Burgholzer, P., Paltauf, G. & Scherzer, O. (2004) Thermoacoustic computed tomography with large planar receivers. Inv. Prob. 20, 16631673.
[56]Haltmeier, M. & Fidler, T. Mathematical challenges arising in thermoacoustic tomography with line detectors, preprint arXiv:math.AP/0610155.
[57]Haltmeier, M., Paltauf, G., Burgholzer, P. & Scherzer, O. (2005) Thermoacoustic tomography with integrating line detectors. In: Proc. SPIE 5864, p. 586402-8.
[58]Haltmeier, M., Scherzer, O., Burgholzer, P. & Paltauf, G. (2005) Thermoacoustic computed tomography with large planar receivers. ECMI Newslett. 37, 3134.
[59]Haltmeier, M., Schuster, T. & Scherzer, O. (2005) Filtered backprojection for thermoacoustic computed tomography in spherical geometry. Math. Methods Appl. Sci. 28, 19191937.
[60]Helgason, S. (1980) The Radon Transform, Birkhäuser, Basel.
[61]Helgason, S. (2000) Groups and Geometric Analysis, AMS, Providence, RI.
[62]Herman, G. (editor) (1979) Topics in Applied Physics, Vol. 32: Image Reconstruction from Projections Springer-Verlag, Berlin.
[63]Hörmander, L. (1983) The Analysis of Linear Partial Differential Operators, Vol. 1, Springer-Verlag, New York.
[64]Inverse Problems (2007) (a special issue devoted to thermoacoustic tomography) 23 (6).
[65]Jin, X. & Wang, L. V. (2006) Thermoacoustic tomography with correction for acoustic speed variations. Phy. Med. Biol. 51, 64376448.
[66]John, F. (1971) Plane Waves and Spherical Means Applied to Partial Differential Equations, Dover, New York.
[67]Kak, A. C. & Slaney, M. (2001) Principles of Computerized Tomographic Imaging, SIAM, Philadelphia, PA.
[68]Köstli, K. P.Frenz, M.Bebie, H. & Weber, H. P. (2001) Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys. Med. Biol. 46, 18631872
[69]Kruger, R. A.Kiser, W. L.Reinecke, D. R. & Kruger, G. A. (2003) Thermoacoustic computed tomography using a conventional linear transducer array. Med. Phys. 30 (5), 856860.
[70]Kruger, R. A.Liu, P.Fang, Y. R. & Appledorn, C. R. (1995) Photoacoustic ultrasound (PAUS) reconstruction tomography. Med. Phys. 22, 16051609.
[71]Kuchment, P. (1993), unpublished.
[72]Kuchment, P. (2006) Generalized transforms of radon type and their applications. In: American Mathematical Society Short Course, 3–4 January 2005, Atlanta, GA, Proc. Symp. Appl. Math. vol. 63, AMS, Providence RI, pp. 67–91.
[73]Kuchment, P., Lancaster, K. & Mogilevskaya, L. (1995) On local tomography. Inv. Prob. 11, 571589.
[74]Kuchment, P. & Lvin, S. (1990) Paley-Wiener theorem for the exponential Radon transform. Acta Applicandae Mathematicae (18), 251–260.
[75]Kuchment, P. & Lvin, S. (1991) The range of the exponential radon transform. Sov. Math. Dokl. 42 (1), 183184.
[76]Kuchment, P. & Quinto, E. T. (2003). Some problems of integral geometry arising in tomography. In: The University of the Radon Transform, Oxform University Press, Oxford, Capter XI.
[77]Kunyansky, L. (2007) Explicit inversion formulae for the spherical mean Radon transform. Inv. Prob. 23, 737783.
[78]Kunyansky, L. (2007) A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inv. Prob. 23, S11S20.
[79]Lin, V. & Pinkus, A. (1993) Fundamentality of ridge functions. J. Approx. Theory 75, 295311.
[80]Lin, V. & Pinkus, A (1994) Approximation of multivariate functions. In H. P. Dikshit & C. A. Micchelli (editors), Advances in Computational Mathematics, World Scientific, pp. 1–9.
[81]Louis, A. K. & Quinto, E. T. (2000) Local tomographic methods in Sonar. In Surveys on Solution Methods for Inverse Problems, Springer, Vienna, David Colton, Heinz W. Engl, Alfred K. Louis, and Joyce R. McLaughlin, pp. 147–154.
[82]Lvin, S. (1994) Data correction and restoration in emission tomography. In E. T. Quinto, M. Cheney & P. Kuchment (editors), Tomography, Impedance Imaging, and Integral Geometry, Lectures in Appl. Math., Vol. 30, AMS, Providence, RI, pp. 149–155.
[83]Maslov, K., Zhang, H. F. & Wang, L. V. (2007) Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo. Inv. Prob. 23, S113S122.
[84]Mathematics and Physics of Emerging Biomedical Imaging, The National Academies Press, 1996. Available online at
[85]Natterer, F. (1986) The Mathematics of Computerized Tomography, Wiley, New York.
[86]Natterer, F. & Wübbeling, F. (2001) Mathematical Methods in Image Reconstruction, Monographs on Mathematical Modeling and Computation 5, SIAM, Philadelphia, PA.
[87]Nessibi, M. M.Rachdi, L. T. & Trimeche, K. (1995) Ranges and inversion formulas for spherical mean operator and its dual. J. Math. Anal. Appl. 196 (3), 861884.
[88]Niederhauser, J. J.Jaeger, M.Lemor, R.Weber, P. & Frenz, M. (2005) Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans. Med. Imaging 24, 436440.
[89]Nilsson, S. (1997) Application of Fast Backprojection Techniques for Some Inverse Problems of Integral Geometry. Linkoeping studies in science and technology, Dissertation 499, Department of Mathematics, Linkoeping University, Linkoeping, Sweden.
[90]Nolan, C. J. & Cheney, M. (2002) Synthetic aperture inversion. Inv. Prob. 18, 221235.
[91]Norton, S. J. (1980) Reconstruction of a two-dimensional reflecting medium over a circular domain: Exact solution. J. Acoust. Soc. Am. 67, 12661273.
[92]Norton, S. J. & Linzer, M. (1981) Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans. Biomed. Eng., 28, 200202.
[93]Novikov, R. (2002) On the range characterization for the two-dimensional attenuated X-ray transform. Inv. Prob. 18, 677700.
[94]Olafsson, G. & Quinto, E. T. (editors), (2006) The Radon transform, inverse problems, and tomography. In: American Mathematical Society Short Course 3–4 January 2005, Atlanta, GA, Proc. Symp. Appl. Math. vol. 63, AMS, Providence, RI.
[95]Oraevsky, A. A.Esenaliev, R. O.Jacques, S. L.Tittel, F. K. (1996) Laser optoacoustic tomography for medical diagnostics principles. In: Proc. SPIE 2676, p. 22.
[96]Oraevsky, A. A. & Karabutov, A. A. (2002) Time-Resolved Detection of Optoacoustic Profiles for Measurement of Optical Energy Distribution in Tissues. In: V. V. Tuchin (editors), Handbook of Optical Biomedical Diagonstics, SPIE, Bellingham, WA, Chapter 10.
[97]Oraevsky, A. A. & Karabutov, A. A. (2003) Optoacoustic tomography. In: T. Vo-Dinh (editors), Biomedical Photonics Handbook, CRC Press, Boca Raton, FL, Chapter 34, 34-1–34-34.
[98]Palamodov, V. P. (2000) Reconstruction from limited data of arc means. J. Fourier Anal. Appl. 6 (1), 2542.
[99]Palamodov, V. P. (2004) Reconstructive Integral Geometry, Birkhäuser, Basel.
[100]Palamodov, V. (2007) Remarks on the general Funk-Radon transform and thermoacoustic tomography. Preprint arxiv: math.AP/0701204.
[101]Paltauf, G., Burgholzer, P., Haltmeier, M. & Scherzer, O. (2005) Thermoacoustic tomography using optical line detection. In: Proc. SPIE 5864, pp. 7–14.
[102]Paltauf, G., Nuster, R., Haltmeier, M. & Burgholzer, P. (2007) Thermoacoustic Computed Tomography using a Mach-Zehnder interferometer as acoustic line detector. Appl. Opt. 46 (16), 33523358.
[103]Passechnik, V. I.Anosov, A. A. & Bograchev, K. M. (2000) Fundamentals and prospects of passive thermoacoustic tomography. Crit. Rev. Biomed. Eng. 28 (3&4), 603640.
[104]Patch, S. K. (2004) Thermoacoustic tomography – Consistency conditions and the partial scan problem. Phys. Med. Biol. 49, 111.
[105]Patch, S. K. & Scherzer, O. (2007) Photo- and thermo-acoustic imaging (Guest Editors. Introduction). Inv. Prob. 23, S01S10.
[106]Popov, D. A. & Sushko, D. V. (2002) A parametrix for the problem of optical-acoustic tomography. Dokl. Math. 65 (1), 1921.
[107]Popov, D. A. & Sushko, D. V. (2004) Image restoration in optical-acoustic tomography. Prob. Information Transmission 40 (3), 254278.
[108]Quinto, E. T. (1980) The dependence of the generalized Radon transform on defining measures. Trans. Amer. Math. Soc. 257, 331346.
[109]Quinto, E. T. (1993) Singularities of the X-ray transform and limited data tomography in IR2 and IR3. SIAM J. Math. Anal. 24, 12151225.
[110]Quinto, E. T. (2006) An introduction to X-ray tomography and Radon transforms. In: American Mathematical Society Short Course, 3–4 January 2005, Atlanta, GA, Proc. Symp. Appl. Math. vol. 63, AMS, Providence RI, pp. 1–23.
[111]Ramm, A. G. (1985) Inversion of the backscattering data and a problem of integral geometry. Phys. Lett. A 113 (4), 172176.
[112]Ramm, A. G. (2002) Injectivity of the spherical means operator. C. R. Math. Acad. Sci. Paris 335 (12), 10331038.
[113]Ramm, A. G. & Zaslavsky, A. I. (1993) Reconstructing singularities of a function from its Radon transform. Math. Comput. Modelling 18 (1), 109138.
[114]La Rivière, P. J.Zhang, J. & Anastasio, M. A. (2006) Opt. Lett. 31 (6), 781783.
[115]Romanov, V. G. (1967) Reconstructing functions from integrals over a family of curves. Sib. Mat. Zh. 7, 12061208.
[116]Schuster, T. & Quinto, E. T. (2005) On a regularization scheme for linear operators in distribution spaces with an application to the spherical Radon transform. SIAM J. Appl. Math. 65 (4), 13691387.
[117]Stefanov, P. & Uhlmann, G. (2008) Integral geometry of tensor fields on a class of non-simple Riemannian manifolds. Am. J. Math. 130 (1), 239268.
[118]Strichartz, R. S. (2003) A Guide to Distribution Theory and Fourier Transforms, World Scientific, Singapore; River Edge, NJ.
[119]Tam, A. C. (1986) Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58 (2), 381431.
[120]Tataru, D. (1995) Unique continuation for solutions to PDEs; between Hörmander's theorem and Holmgren's theorem. Comm. PDE 20, 814822.
[121]Tuchin, V. V. (editor) (2002) Handbook of Optical Biomedical Diagnostics, SPIE, Bellingham, WA.
[122]Vainberg, B. (1975) The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as t → ∞ of the solutions of nonstationary problems. Russian Math. Surveys 30 (2), 158.
[123]Vainberg, B. (1982). Asymptotics Methods in the Equations of Mathematical Physics, Gordon & Breach, New York–London.
[124]Vo-Dinh, T. (editor) (2003) Biomedical Photonics Handbook. CRC Press, Boca Raton, FL.
[125]Wang, L. (editor) Photoacoustic Imaging and Spectroscopy, CRC Press, Boca Raton, FL, to appear.
[126]Wang, L. V. & Wu, H. (2007) Biomedical Optics. Principles and Imaging. Wiley-Interscience, Hoboken, New Jersey.
[127]Wang, L. H. V. & Yang, X. M. (2007) Boundary conditions in photoacoustic tomography and image reconstruction. J. Biomed. Opt. 12 (1), 10.
[128]Wang, X., Pang, Y., Ku, G., Xie, X., Stoica, G. & Wang, L. (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21 (7), 803806.
[129]Xu, M. & Wang, L.-H. V. (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging 21, 814822.
[130]Xu, M. & Wang, L.-H. V. (2005) Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71, 016706.
[131]Xu, M. & Wang, L.-H. V. (2006) Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101-01041101-22.
[132]Xu, Y., Feng, D. & Wang, L.-H. V. (2002) Exact frequency-domain reconstruction for thermoacoustic tomography: I. Planar geometry. IEEE Trans. Med. Imaging 21, 823828.
[133]Xu, Y., Xu, M. & Wang, L.-H. V. (2002) Exact frequency-domain reconstruction for thermoacoustic tomography: II. Cylindrical geometry. IEEE Trans. Med. Imaging 21, 829833.
[134]Xu, Y., Wang, L., Ambartsoumian, G. & Kuchment, P. (2004) Reconstructions in limited view thermoacoustic tomography. Med. Phys. 31 (4), 724733.
[135]Xu, Y., Wang, L., Ambartsoumian, G. & Kuchment, P. (2007) Limited view thermoacoustic tomography. To appear in [126].
[136]Zhang, J. & Anastasio, M. A. (2006) Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography. In: Proc. SPIE 6086, p. 608619.
[137]Zobin, N. (1993). Unpublished.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed